CMR TECHNICAL CAMPUS **UGC AUTONOMOUS**

B. Tech. III Semester Regular/Supply End Examinations, Feb-2023 Data Structures using C

Common to CSE, IT, CSM, CSD, CSG, AIML

Time: 3 Hours

Note

Max. Marks: 70

i. This Question paper contains Part- A and Part- B.

ii. All the Questions in Part A are to be answered compulsorily.

iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1	l. a b	Define abstract data type. Write a pseudocode for checking stack is empty.	2 2	CO1 CO1	L1
	e d	List out the operations performed in distinguishing	2 2	CO2	L2 L2
	e f	Differentiate between Binary tree and binary search tree. List out the applications of Red-Black tree.	2 2	CO2 CO3 CO3	L1 L3 L2
	g h	What are the applications of graph? What is the time complexity of merge sort?	2 2	CO4 CO4	L2 L3
	i j	List out the algorithms used for pattern matching. Write short notes on suffix tries.	2 2	CO5	L2 L2
		PART- B			
			5 X 10 = 50 Marks		
			Marks	CO	BL
2.	a	Write a procedure to do different types of insertion and deletion elements from singly linked list.	10	CO1	L3
3	a	Define Queue ADT. Write an algorithm for different operations performed on Queue using array.	6	CO1	L3
	b	Convert the following infix expression into postfix notations: a+b*c/d-f+g	4	CO1	L4
4	a	Write the Program to implement the following operations on binary search tree: Perform insert and delete operations on binary search tree	10	CO2	L3

0.1	<i>~</i> .	200000000	")ke"		
Subject	Code	e: 20CS304PC SET-I HT NO:	7 R		
5	a	Define collision in hashing. Explain collision resolution techniques in context of hashing with example.	10	CO2	L3
6		Write an algorithm to AVL tree insertion. Insert the following elements in an empty tree and balance the tree after each insertion:	10	CO3	L4
		Data: 3, 6, 5, 8, 19, 10, 2, 17,13,11,1,4			
		OR			
7	a	Explain in detail about splay tree with its properties, types with suitable examples.	7	CO3	L3
	b	Explain the acceptable balancing factor of AVL tree.	3	CO3	L2
8	a	Perform merge sort algorithm on the following values: 58, 8, 21, 64, 98, 34, 28, 13, 45, 59, 68	5	CO4	L4
	b	Write an algorithm for heap sort. OR	5	CO4	L3
.9	a	Explain in detail about BFS and DFS algorithm. Apply the same to the following graph:	10	CO4	L4

10 a	Explain in detail about the Brute-Force and Bayer Moore	10	CO5	L3
	Pattern Maching algorithms with proper examples. OR			
11 a	Explain in detail about the Knuth-Morris-Pratt algorithm with	10	CO5	L3
	an example.		- 15 542	

CO : Course Outcomes

BL : Bloom's Taxonomy Levels L 1 : Remembering L 2 : Understanding

 $L\ 3: Applying \qquad \qquad L\ 4: Analysing$

L 5: Evaluating L 6: Creating

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B.Tech - III Semester, Regular End Examinations, Feb-2022

Data Structures using C [20CS302PC] (Common to CSE, IT, CSD & CSM)

Time: 3 Hours **Answer Any Five Questions**

Max. Marks: 70

All Questions Carry Equal Marks

[arks

- v •	5X 14 = 70 Ma
1. a. Explain linked list implementation of queues.	[7M]
b. Distinguish between stack and queue.	[7M]
2. a. Explain Stack ADT and its operations.	[7M]
b. Write an algorithm to convert infix expression to postfix expression.	[7M]
3. a. Explain Rehashing in detail.	[7M]
b. Demonstrate skip list operations.	[7M]
4. a. Explain linear probing with an example.	[7M]
b. Write short notes on separate chaining.	[7M]
5. a. How to construct AVL tree. Explain with an example?	[7M]
b. What are the properties of red-black tree?	[7M]
6. a. What are the advantages of binary search tree?	[5M]
b. Explain splay trees with an example?	[9M]
7. a. Write an algorithm to sort elements using Heap sort technique?	[7] (1)
b. Demonstrate DFS using suitable example?	[7M]
	[7M]
8. a. How does the Boyer-Moore algorithm work?	[7M]
b. What are the different types of tries?	[7M]

SET-I

7 R

CMR TECHNICAL CAMPUS UGC AUTONOMOUS

B.Tech - III Semester, Supply Examinations, July-2022 Data Structures using C[20CS302PC] (Common to CSE, CSD, CSM & IT)

Time: 3 Hours

Max. Marks: 70

Answer Any Five Questions All Questions Carry Equal Marks

5 X 14 = 70 Marks

- 1. a. Explain various operations that are performed on queue with suitable algorithms.[7M] b. Explain stack ADT operations with suitable example. [7M]
- 2. a. Explain the Infix to postfix conversion using stack ADT.

[7**M**]

- b. Write an algorithm to insert new node at the beginning, at middle position and at the end of a Singly Linked List. [7M]
- 3. Explain how data is inserted and deleted from dictionaries while it is implemented using list data structure. [14M]
- 4. The keys 12,18,13,2,3,23,5,and 15 are inserted into an initially empty hash table of length 10 using linear probing with hash function h(k)= k mod 10. What is the resultant hash table? [14M]
- 5. a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty AVL tree?
- b. Show the result after each insertion of AVL Tree and also show the result after deletion of the root?

[7**M**]

- 6. What are the properties that are satisfied by red- black tree? Explain LLr, LRr,RRr, RLr rotations. [14M]
- 7. a. Explain about the DFS with example.

[7M]

b. Explain merge sort with an example.

[7M]

- 8. a. Explain about the KMP pattern matching algorithm. Illustrate the operations of KMP pattern matching algorithm with example. [7M]
 - b. Discuss standard Tries and Compressed Tries.

[7**M**]
