SET-II

HT NO: 7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B.Tech. VI Semester Regular End Examinations, May-2023 Artificial Intelligence

Department of CSM

Time: 3 Hours

Max. Marks: 70

Note

i. This Question paper contains Part- A and Part- B.

ii. All the Questions in Part A are to be answered compulsorily.

iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

•			Marks	CO	\mathbf{BL}
1.	a	What are the four basic types of agent program in any intelligent system?	2	CO1	L2
	ь	Define a problem and its components.	2	CO1	L1
	c d	List some of the rules of inference. Define the structure of Problem.	2 2	CO2 CO2	L2 L2
	e f	Describe models for first order logic Outline categories and objects in Knowledge Representation?	2 2	CO3 CO3	L2 L1
	g h	How do you plan with Time, Schedules, and Resources? What is Classical Planning?	2 2	CO4 CO4	L1 L1
١.	i j	Define Relational and First-Order Probability? Describe learning Using Relevance Information?	2 2	CO5 CO5	L1 L2

PART-B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	\mathbf{BL}
2.	а	How an algorithm's performance is evaluated? Compare different uninformed search strategies in terms of the four evaluation criteria.	5	CO1	L4
	b	Discuss the characteristics of AI problem. Can Towers of Hanoi problem be considered as AI problem? Justify your answer with suitable	5	CO1	L6
		OR			
3.	a	Explain in detail about Uninformed Search and Informed Search Strategies.	5	CO1	L5
	b	Illustrate Greedy Best First Search? Explain with an example the different stages of Greedy Best First search.	5	CO1	L4

		MINE COLOR AND		æ-, :	:	-
Subje	ot Cod	1.201/201	•			
Subje	et Coc	le:20Ai601PC SET-II HT NO:	7 R		•	
	4 a	Differentiate propositional logic with FOL. List the inference rules along with suitable examples for first order logic	5	CO2	4 1.	
6)	ь	Explain Adversarial search problem with example OR	5	CO2	L5	
	5 a b	Explain alpha beta pruning with example? Propose resolution proof for "West is a criminal" problem statement	5 5	CO2 CO2	L5 L6	
•	5 a	Write down logical representations for the following sentences suitable to use with Generalized Modus Ponens: (a) Horses, cows and pigs are mammals (b) An offspring of a horse is a horse (c) Bluebeard is a horse	5	CO3	L6	
	b	Explain the syntactic elements of first-Order logic OR	5	CO3	L5	
7	7 а	Explain about the Backward & Forward Chaining with example.	5	CO3	L6	
	Ь	What are Reasoning Systems for Categories in Knowledge Representation?	5	CO3	L4	`
8		How to select plan and act in Non-deterministic Domains and what are some examples of such domains?	5	CO4	L3	
	b	Explain the use of planning graph in providing better heuristic estimation with suitable example?	5	CO4	L5	
9	a	OR Classify Algorithms for Planning with State-Space Search and how do they work?	5	CO4	L4	
	b	Explain Planning Graphs and how do they work?	5	CO4	L5	
1(0 a	Categorize Forms of Learning and how do they differ from each other?	5	CO5	L4	
	b	Discuss about the Supervised Learning and list the advantages?	5	CO5	L6	
		OR				١
11	l a	Interpret Inductive Logic Programming and how does it differ from other types of programming?	5	CO5	L5	

CO : Course Outcomes

b

ΒĻ : Bloom's Taxonomy Levels L1: Remembering L 2: Understanding

Discus about learning Decision Trees and how do they work?

differ from other types of programming?

L3: Applying L 4 : Analysing CO5

L6

L 5: Evaluating L 6 : Creating

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B.Tech.VI Semester Supply End Examinations, January-2024 Artificial Intelligence Department of CSM

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	СО	BL
1.	a	Define an Agent?	2	CO1	L1
	b	Outline the characteristics of intelligent agent	2	CO1	L2
	c	Distinguish between prepositional & predicate logic	2	CO2	L4
	d	Define forward and backward chaining	2	CO2	L1
	e	Explain about generic knowledge-based agent.	2	CO3	L2
	f	What is Unification and Lifting?	2	CO3	L1
	g	How do you plan and act in Non-deterministic Domains?	2	CO4	L1
	h	Summarize the Algorithms for Planning with State-Space Search?	2	CO4	L2
	i	Demonstrate performing Inference Using Full Joint Distributions?	2	CO5	L2
	j	How do you Represent Knowledge in an Uncertain Domain?	2	CO5	L1

PART-B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	BL
2.	a	Explain Depth First Search and Breadth First search with Suitable examples.	5	CO1	L5
	b	Discuss A* algorithm with an example OR	5	CO1	L6
3	a	Discuss Hill Climbing search method	5	CO1	L6
	b	Explain the local search algorithm with example.	5	CO1	L5
4	a	Differentiate propositional logic with FOL. List the inference rules along with suitable examples for first order logic	5	CO2	L4
	b	Elaborate the procedure to convert the formula in	5	CO2	L6

HT NO: | 7 R

					-
		proportional logic into CNF. Convert the formula (~A->B)^(C^A)into its equivalent CNF representation.			(0
		OR			/
5	a	Discus solutions for the map-coloring problem	5	CO ₂	L6
	b	Explain the syntactic elements of first-Order logic	5	CO2	L6
6	a	Interpret the limitations of Predicate logic as a tool for Knowledge representation? Illustrate through examples.	5	CO3	L5
	b	Classify Mental Events and Mental Objects in Knowledge Representation?	5	CO3	L4
		OR			
7	a	Develop logical representations for the following sentences suitable to use with Generalized Modus Ponens:	6	CO3	L6
		(a) Offspring and parent are inverse relations(b) Every mammal has a parent. Draw the proof tree generated by an exhaustive back-ward chaining algorithm for the query ∃h Horse(h).			
	b	Justify reasoning with Default Information?	4	CO3	L5
	D	Justify reasoning with Default Information?	4	COS	LJ
8	a	Explain plan and act in Non-deterministic Domains and what are some examples of such domains?	5	CO4	L5
	b	Illustrate the working of Classical Planning and how does it work?	5	CO4	L4
		OR			
9	a	Evaluate the analysis of Planning approaches and what are the criteria for analysis?	5	CO4	L5
	b	Explain Hierarchical Planning and how does it differ from Classical Planning	5	CO4	L4
10	a	Explain the impact of uncertainty in probabilistic reasoning?	5	CO5	L5
	b	Computeinference Using full joint distributions and what are the advantages and disadvantages of this approach? OR	5	CO5	L4
11	a	Explain Bayes' Rule and its utilization in probabilistic reasoning	5	CO5	L5
	b	Write in detail about Relational and First-Order Probability and how does it differ from other types of probability?	5	CO5	L6

CO : Course Outcomes

BL : Bloom's Taxonomy Levels L 1 : Remembering L 2 : Understanding

L 3 : Applying L 4 : Analysing

L 5 : Evaluating L 6 : Creating