SET-I

Subject Code: 19MA303BS

HT NO:

7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. III Semester Supply End Examinations, July/August-2023 Computer Oriented Statistical Methods Common to CSE & IT

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

		PARI-A			
			$10 \times 02 =$	$10 \times 02 = 20 \text{ Marks}$	
			Marks	CO	\mathbf{BL}
1.	a b	Define sample space and give an example. $(kx, 0 < x < 1)$	2	CO1	L1
	U	If the probability density function is $f(x) = \begin{cases} kx, & 0 < x < 1 \\ 0, & 0 \end{cases}$ Find the value of k.	2	CO1	L2
	c d	State Chebyshev's theorem. In a geometric distribution $P(x)=2^{-x}$, $x=1,2,3$ then find its mean.	2 2	CO2 CO2	L1 L3
	е	What are the chief characteristics of Normal distribution.	2	CO3	L1
	f	A sample of size 10 was taken from a population standard deviation of a sample is 0.03. Find the maximum error with 99% confidence.	2	CO3	L4
	g	The variance of a population is 2. The size of the sample collected from the population is 169. What is the standard error of mean?	2	CO4	L2
	h	Explain the Null and Alternative Hypothesis.	2	CO4	L2
	i j	Define a Stochastic Process and a Markov chain.	2	CO5	L1
	J	Test the matrix $\begin{bmatrix} \frac{15}{16} & \frac{1}{16} \\ \frac{2}{3} & \frac{4}{3} \end{bmatrix}$ is stochastic or not.	2	CO5	LL2
		PART-B			
			5 X 10 = 50 Marks		•
			Marks	CO	\mathbf{BL}
2.	a	Three machines A, B and C produce 40%,30% and 30% of the total number of items of a factory. The percentage of a	5	COI	L2
		• • •			
		defective items of these machines are 4%,2% and 3%. An			
		item is selected at random and found to be defective. Find the			
		probability that it is from:			
	b	i) Machine-A ii) Machine-B iii) Machine-C Explain types of Random Variables with examples.	5	CO1	L2

10 a Explain the classification of stochastic processes.
b A training process is considered as a two state Ma

A training process is considered as a two state Markov chain. If it rains it is considered as 0 and if not considered as 1. The transition probability matrix of the Markov chain is p. [0.6 0.4]

5

5

CO₅

CO₅

L2

L3

 $P = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$

Find the probability that it will rain after three days, assuming that the mutual probabilities of state 0 are state 1 as 0.4 and 0.6 respectively.

HT NO:

OR

11 The three state Markov chain is given by the transition

 $\begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ 0 \end{bmatrix}$. Prove that the chain is irreducible.

10 CO₅ L3

CO : Course Outcomes

BLL1: Remembering L 2: Understanding : Bloom's Taxonomy Levels

> L 4 : Analysing L3: Applying

L 5: Evaluating L 6: Creating
