SET-II

HT NO:

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. III Semester Supply End Examinations, August-2023 **Data Structures**

Common to CSE & IT

Time: 3 Hours

Subject Code: 19CS302PC

Note

Max. Marks: 70

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	\mathbf{BL}
1.	a b	Discuss stack overflow with an example? What are the applications of the singly linked list?	2 2	CO1 CO1	L2 L1
	c d	What is Double hashing? What are the problems in hashing?	2 2	CO2 CO2	L1 L1
	e f	Define Red Black Tree? Discuss the drawbacks of AVL trees?	2 2	CO3 CO3	L1 L2
	g h	Define Min Heap with an example? List out External sorting methods?	2 2	CO4 CO4	L1 L1
	i i	Define Pattern Matching and Tries? Explain Standard Tries?	2 2	CO5 CO5	L1 L1

PART-B

5 X 10 = 50 Marks

			Marks	CO	BL
2.	a	Write a Program to implement linked list using array. OR	10	CO1	L3
3	a	Write an algorithm for basic operations of Queue.	5	CO1	L1
"	Ъ	Write a program to implement the insert and delete operations on a Queue.	5	CO1	L3
4	a	Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result Separate Chaining, linear probing	10	CO2	L4
		OR			
5	a	Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31	10	CO2	L3

Subje	ct C	ode:	19CS302PC	SET-II	HT NO:	7 R		
	6	a	Construct AVL tree for the 36, 15, 12, 39, 2, 19).	ne following elements	(23, 32, 24,	10	CO3	L3:
	7	a	Write an algorithm to corgiven list of elements. Ille 47, 6, 71, 62, 88, 25	nstruct a Binary Search		10	CO3	L2 .
	8	a	Give any two representat DFS. Demonstrate DFS u			10	CO4	L2
	9	a	Explain the heap sort algorithm elements stepwise 3, 5, 9	orithm by tracing the f	following	10	CO4	L2
	10	a	Explain in detail Boyer - with example	Moore and Brute Forc	e algorithm	10	CO5	L2
	11						CO5	L3
	со	:	Course Outcomes					
	BL	:	Bloom's Taxonomy Levels	L 1 : Remembering	L 2 : Ur	nderstandi	ng	
				L 3 : Applying	L 4 : Ar	alysing		9.0
				L 5 : Evaluating	L 6 : Cr	eating		11 1 _
