de: 20CS635PE

SET-I

HT NO: | 7 R |

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. VI Semester Regular End Examinations, May-2023 Software Testing & Methodologies Common to CSE, IT, CSM&CSD

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	\mathbf{BL}
		$\dot{\mathbf{y}}$			
1.	a	What are the Goals of Software Testing?	02	CO1	L1
	b	Differentiate Testing and Debugging	02	CO1	L2
	c	What is Transaction? What are the different tasks in Online Information retrieval system.	02	CO2	L1
	d	Explain Open and Closed Domains.	02	CO2	L2
	e	What are Decision tables? Give example.	02	CO3	L1
	f	Discuss Distributive Laws and Absorption Rule	02	CO3	L2
	g	What is Dead state?	02	CO4	L1
	h	What is State? Give examples for Improper States.	02	CO4	L1
	i	State the Basic Principles of Graph Matrix.	02	CO5	L2
	j	Explain Matrix Powers and Products.	02	CO5	L2

PART-B

5 X 10 = 50 Marks

			Marks	CO	\mathbf{BL}
2.	a	With a Neat Diagram Explain Model for Testing	05	CO1	L2
	b	What are Structural Bugs? Explain	05	CO1	L2
		OR			
3	a	What is Control Flow graph? Explain each Element with	06	CO1	L2
		Suitable Diagrams.			
	b	Explain Consequence of Bugs.	04	CO1	L2
4	a	Discuss the Complications in Transaction Flow Testing.	04	CO2	L6
	b	What is Data flow Graph? Discuss different Data Flow Anomalies.	06	CO2	L2

					TYPE NIO			
ii	ect C	ode	: 20CS635PE	SET-I	HT NO:	7 R		
			· · · · · · · · · · · · · · · · · · ·					
	5	a	What is meant by Transacti	ion Flow Testing? I	Discuss	05	CO2	
)		ь	Transaction Flow Structure Explain Nice and Ugly Dor			05	CO2	LŽ
	6	a b	Explain Path Sums and Pat Decision Tables as a basis : Detail.	for Test Case Desig	amples m. Discuss in	05 05	CO3 CO3	L2 L6
	7	a	Explain Regular Expressio	OR ns and Flow Anoma	aly Detection.	10	CO3 CO3	L2
			ý	1.D. 1.0/-/- C	L a	05	CO4	L2
	8	a b	Explain about Good State a What are the Principles of and Disadvantages.	State Testing? Disc	uss Advantages		CO4	L2
	•		e'	OR	1 -	05	CO4	L2
	9	a b	Explain Software impleme Draw State Graph that dete "ZCZC" and Explain.	entation of State Gra ects the Character S	apns. Sequence	05	CO4	L2
	4.0		Toulein about Mada Dadu	otion Algorithm		05	CO5	L2
	10	a b	Explain about Node Reduce Explain the different Window and their usage in Testing A	ws that are available in pplications.	in Win Runner	05	CO5	L2
	11	a	Write about Equivalence l	OR Relation and Partial	Ordering	05	CO5	L2
		b	Relation. Can you provide an overview Testing Environment?	w of the Features pro	esent in Jmeter	05	CO5	L4
	cc)	: Course Outcomes					
	BL		: Bloom's Taxonomy Levels	L 1 : Remembering	g L2	: Understandi	ing	
				L 3 : Applying	L 4	: Analysing		

L 5 : Evaluating

L 6: Creating

Subject Code: 20CS635PE

HT NO: | 7 R | |

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. VI Semester Supply End Examinations, January-2024 Software Testing & Methodologies Common to CSE, IT, CSM&CSD

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a b	What is testing? Contrast the modularity and efficiency?	2 2	CO1 CO1	1 2
	c d	What is meant by transaction and give an example. Give an example for transaction flow.	2 2	CO2 CO2	1
	e f	What is meant by path? Give example of it. Give an example for Structured flow graph Transformations	2 2	CO3 CO3	1 1
	g h	What is state? Give an example. Give an example for State Table	2 2	CO4 CO4	1 1
	i j	What is meant by Tool Building What is meant by Graph matrix	2 2	CO5 CO5	1 1

PART- B

5 X 10 = 50 Marks

			Marks	CO	BL
2.	a	Compare Testing and Debugging	5	CO1	2
	b	Describe the phases in the testers mental life OR	5	CO1	1
3	a b	Interpret the flow graph elements by using symbols. Describe the concept of path testing	5 5	CO1 CO1	2 2
4	a b	Design the forgiving data flow anomaly state graph. Elaborate the strategies in data flow testing. OR	5 5	CO2 CO2	6 6
5	a b	Interpret the Nice and Ugly domains Demonstrate the testing of two-dimensional domains	5 5	CO2 CO2	2 2

ubject (Code	E 20CS635PE SET-I HT NO:	7 R		
6	a	Infer the Maximum Path Count Arithmetic with an example	5	CO3	2
	b	Exemplify the Reduction procedure algorithm with an example.	5	CO3	2
		OR			8
7	a	Write a short note on Regular expressions and Flow anomaly detection.	5	CO3	1
	b	Illustrate the Kv charts for the function of two variables	5	CO3	2
8	a	Outline the State Graphs	5	CO4	2
o	b	Discuss the i)Equivalent states ii) Transition bugs	5	CO4	6
	U	OR	3	CO+	O
9	a	Analyse the principles of state testing	5	CO4	4
	b	Assess the Limitations and Extensions of State testing	5	CO4	5
10	a	Identify the Problems with Pictorial Graphs, Give brief view	5	CO5	2
		on those.			
	b	Inference the matrix of a graph along with example OR	5	CO5	2
11	a	Infer the i)Symmetric relations ii) Asymmetric relations	5	CO5	2
	b	Outline the i)Equivalence relation ii)Partial ordering relation	5	CO5	2

CO : Course Outcomes

BL: Bloom's Taxonomy Levels L1: Remembering L2: Understanding

L 3 : Applying L 4 : Analysing

L 5 : Evaluating L 6 : Creating
