HT NO: 7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. I Sem Supply End Examinations, January-2024 Engineering Chemistry Common to CSE, IT, CSM

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 10 \text{ Marks}$

			Marks	CO	BL
1.	a b	Distinguish the bond order of O ₂ molecule. Identify any four salient features of CFT.	2M 2M	CO1 CO1	L4 L3
	c d	Explain temporary and permanent hardness of water? Why is Calgon conditioning better than Phosphate conditioning.	2M 2M	CO2 CO2	L2 L1
	e f	What is Pitting corrosion? Derive Nernst equation for single electrode potential.	2M 2M	CO3 CO3	L1 L3
	g	Illustrate Saytzeff's rule (Dehydrohalogenation of alkyl	2M	CO4	L2
	h	halides) Explain the Anti Markownikoff's rule with example.	2M	CO4	L2
	i j	Write the principle of electronic magnetic spectrum. List the various applications of electronic spectroscopy.	2M 2M	CO5 CO5	L1 L1

PART-B

 $5 \times 10 = 50 \text{ Marks}$

CO

BL

Marks

2.	a	Write the energy level diagram for N ₂ calculate the bond order, magnetic properties?	6M	CO1	L3
	b	Enumerate the salient features of Crystal field theory.	4M	CO1	L2
		OR	-		
3	a	Explain crystal field splitting of transition metal ion d- orbital tetrahedral complexes.	4M	CO1	L2
	b	Write the energy, level diagram for NO and calculate the	6M	CO1	L3
		bond order, magnetic properties.			

Subject Code:	20CH102BS

11100	HT NO:	7	R			
-------	--------	---	---	--	--	--

4	a	Summarize a short note on the following	4M	CO2	L2
	b	a) Phosphate conditioning b) Ozonisation Explain the principle of EDTA method? Describe the estimation of hardness of water by EDTA method. OR	6M	CO2	L5
5	a	What is the principle of reverse osmosis? What are main advantage of reverse osmosis over ion exchange process?	6M	CO2	L1
	b	A Sample of hard water contains the following dissolved salts per litre. CaCl ₂ =111mgs, CaSO ₄ =13.6mgs, Ca (HCO ₃) ₂ =16.2mgs, Mg (HCO ₃) ₂ =14.6mgs, silica=40mgs, Turbidity=10mgs. Calculate the temporary, permanent and total hardness of water in ppm	4M	CO2	L3
6	a	Discuss the construction and working of calomel electrode with a neat diagram.	6M	CO3	L6
	b	Discuss the various factors affecting rate of corrosion. OR	4M	CO3	L3
7	a	Explain the construction and working of lead acid battery. Write down the reactions taking place during charging and discharging.	6M	CO3	L5
	b	Write a short note on the following (i) Galvanic Corrosion ii) Waterline Corrosion	4M	CO3	L3
8	a	Differentiate between SN1&SN2 reactions.	6M	CO4	L2
	b	What is LAH? Write down product of below reaction Cyclohexanone + LAH →	4M	CO4	L1
9	a	OR Illustrate synthesis and medicinal applications of Aspirin	6M	CO4	L3
,	а	(Analgesic)	OIVI	CO4	13
	b	Differentiate between Enantiomers and Diastereomers.	4M	CO4	L2
10	a	Discuss the principle and selection rules of rotational spectroscopy.	4M	CO5	L6
	b	Write a short note on the following (i) Applications of NMR (ii) MRI	6M	CO5	L3
11	a b	OR List the various applications of vibrational spectroscopy. Write a short note on the following (i) Chemical Shift (ii) Spin-Spin splitting.	4M 6M	CO5 CO5	L4 L3

CO : Course Outcomes

BL : Bloom's Taxonomy Levels L 1 : Remembering L 2 : Understanding

L 3 : Applying L 4 : Analysing

L 5 : Evaluating L 6 : Creating

HT NO: 7 R

CMR TECHNICAL CAMPUS UGC AUTONOMOUS

B. Tech. II Sem Supply End Examinations, January-2024 Engineering Chemistry

Common to CE, ME, AIML, CSG, ECE, CSD

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a	Derive the bond order of N ₂ molecule.	2M	CO1	L4
	ь	Draw the Π molecular orbital of butadiene.	2M	CO1	L3
	c	Identify break point of chlorination? State its significance.	2M	CO2	L3
	d	What are the specification of potable water?	2M	CO2	L1
	е	What is electrochemical series and write its applications.	2M	CO3	L1
	f	Differentiate primary and secondary batteries with suitable examples.	2M	CO3	L2
	g	Define enantiomers and give one example.	2M	CO4	L1
	h	Differentiate between structural and stereo isomers	2M	CO4	L1
	i	Write the principle of Lambert Beer's Law.	2M	CO5	L1
	j	Predict the Woodword-fieser rule.	2M	CO5	L6

PART- B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	BL
2	2. a	Write the energy level diagram for O ₂ and calculate the bond order and magnetic properties.	5M	CO1	L3
	b	Define Atomic & molecular orbitals? Explain the Linear combination of atomic orbitals (LCAO) into molecular orbitals.	5M	CO1	L2
		OR			
3	3 a	Explain crystal field splitting of transition metal ion d- orbital octahedral complexes.	5M	CO1	L2
	b	Write the energy level diagram for N ₂ and calculate the bond order and magnetic properties.	5M	CO1	L3
4	4 a	Explain the principle of EDTA method? Describe the	6M	CO2	L5

Subject	Code:	20CH202BS	SET-I	HT NO:	7 R		
	b	A Sample of has alts per litre. (HCO ₃) ₂ =16.2mg	Iness of water by EDTA metric distribution of water contains the following CaCl ₂ =111mgs, CaSO ₄ s, Mg (HCO ₃) ₂ =14.6mgs, Calculate the temporary, water in ppm	ewing dissolved =13.6mgs, Ca silica=40mgs,	4M	CO2	L4
5	a		cation of water by ion exchantages and disadvantages.	nge process	6M	CO2	L5
	b	Summarize a short	rt note on the following oning b) Colloidal condition	ing	4M	CO2	L2
6	a	*	ruction of Quinhydrone elec pH using Quinhydrone elect		6M	CO3	L5
	b	Write a short note	e on the following dic protection method	roue.	4M	CO3	L2
7	a		ochemical theory of wet cor	rosion and give	6M	CO3	L3
	b	its mechanism. Discuss the lead-discharge.	acid battery with reactions o	ccurring during	4M	CO3	L6
8	a	Explain the Mark	kownikoff's rule with examp	oles.	4M	CO4	L5
	b	Develop the syntlapplications of G	nesis of Grignard reagent? W rignard reagent. OR	/rite the	6M	CO4	L3
9	a	Develop the synthesis medicinal proper	nesis of Paracetamol and wri	te any two	5M	CO4	L6
	b		ormational isomers of n-Buta	ine.	5M	CO4	L5
10	a	Discuss the princ spectroscopy.	iple and selection rules of vi	brational	4M	CO5	L6
	b	Summarize a sho	rt note on the following t (ii) Spin-Spin splitting. OR		6M	CO5	L2
11	a	List the various a	pplications of electronic spe	ctroscopy.	4M	CO5	L4
	b	Explain the follow	wing		6M	CO5	L2

CO : Course Outcomes

(i) Applications of NMR (ii) MRI

BL : Bloom's Taxonomy Levels L1: Remembering L 2: Understanding

> L3: Applying L 4 : Analysing

L 5 : Evaluating L 6: Creating