Subject Code: 20MA101BS

SET-II

HT NO:

7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. I Sem Supply End Examinations, January-2024 Algebra & Calculus

Common to CE, ME, AIML, CSG, ECE, CSD, CSE, IT, CSM

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a	State the conditions for consistency of system of equations $AX = B$	2M	CO1	L1
	b	Define Hermitian Matrix.	2M	CO1	L3
	c d	Write any two properties of eigen values. Specify the various natures of quadratic forms.	2M 2M	CO2 CO2	L2 L2
	e f	Define D'Alembert's ratio test. Check whether the series 1+2+3+ is convergent/divergent.	2M 2M	CO3 CO3	L4 L2
	g h	Write the Taylor's series expansion of $f(x)$ at $x = a$ Find $\int_0^{\frac{\pi}{2}} \tan^{1/2}\theta \ d\theta$	2M 2M	CO4 CO4	L3 L3
	i j	Define Jacobian functional dependence. State Euler's theorem.	2M 2M	CO5	L2 L1

PART-B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	BL
2.	a	Find the rank of A= $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$	5M	CO1	L5
	b	Solve the system of equations by Gauss elimination method $3x + y + 2z = 3$; $2x - 3y - z = -3$; $x + 2y + z = 4$	5M	CO1 ,	L4
		$3\lambda + y + 2z = 3$, $2\lambda + 3y + z = 3$			

Subject Code: 20	MA101BS
------------------	---------

b

5

SET-II

U	T	N	

5M

5M

5M

5M

5M

5M

CO₁

L5

L4

L3

L4

L4

L3

L1

L4

L4

3	a			-2		
		Find the inverse of	0	2	0	using Gauss Jordan method
			L0	0	3]	

Verify the matrix $A = \frac{1}{2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 2 & 10 & 14 \end{bmatrix}$ is orthogonal.

5M CO₁ L3

CO₂

Reduce the quadratic form to canonical form by an orthogonal reduction and state the nature of the quadratic form
$$5x^2 + 26y^2 + 10z^2 + 4yz + 14zx + 6xy$$

Find the inverse of $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by using Caley Hamilton

theorem. Find the eigen values and eigen vectors of the matrix 5M CO₂ L3

Find the nature of the series $\sum \frac{x^{2n}}{(n+2)\sqrt{n+1}}$, (x > 0). 10M L5 6 CO₃

Examine the convergence of $\sum \frac{(n^3-5n^2+7)}{(n^5+4n^4-n)}$. 7

Examine the convergence of $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ b 5M CO₃

Using Rolle's theorem, show that 8 $f(x) = 8x^3 - 6x^2 - 2x + 1$ has a zero between 0 and 1.

Find the Taylor's series expansion of sin2x about $x = \frac{\pi}{4}$ b

Verify Cauchy's mean value theorem for $f(x) = x^2$, 9 a

5M $g(x) = x^3$ in [1,2]. Using beta function, solve $\int_0^1 \frac{x}{\sqrt{1-x^2}} dx$ b 5M CO₄

10 a If u = x + y + z; uv = y + z; uvw = z; then evaluate 5M $\partial(x,y,z)$ $\partial(u,v,w)$

Find the minimum value of $x^2 + y^2 + z^2$ given b

x + y + z = 3a

Discuss the maximum and minimum of 11 a

 $f(x,y) = x^2 + y^2 + 6x + 12$ Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for the functions $u = tan^{-1} \frac{x}{y}$.

L3 CO₄ L5

CO₃

CO₄

CO₄

5M CO₅ L3

CO₅

CO₅

5M CO₅ L3