Subject Code: 20MA201BS

SET-I

HT NO: | 7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. II Sem Supply End Examinations, January-2024 Ordinary Differential Equations & Vector Calculus ommon to CE, ME, AIML, CSG, ECE, CSD, CSE, IT, CSM

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a	Form the differential equation by eliminating arbitrary	[2M]	CO1	L6
	b	constants $y = Ae^x + Be^{-x}$ Solve $(e^y + 1)\cos x dx + e^y \sin x dy = 0$	[2M]	CO1	L3
	c d	Find the Particular Integral of $(D^2-5D+6)y = e^{4x}$ Solve $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$	[2M] [2M]	CO2 CO2	L1 L3
	e	Evaluate $\int_0^3 \int_1^2 xy(1+x+y) dydx$	[2M]	CO3	L5
	f	Evaluate $\int_0^1 \int_y^1 \int_0^{1-x} x dz dx dy$	[2M]	CO3	L5
	g	Find $\nabla \emptyset$ when $\emptyset = 3x^2y - y^3z^2$ at $(1, -2, -1)$	[2M]	CO4	L1
	h	Find the value of m if $\bar{F} = mx\bar{\iota} - 5y\bar{\jmath} + 2z\bar{k}$ is Solenoidal Vector	[2M]	CO4	L1
	i	Evaluate $\int_C \overline{F} \cdot \overline{dr}$ where $\overline{F} = x^2 \overline{\iota} + y^2 \overline{\jmath}$ and C is the curve $y = x^2$ in the xy-plane	[2M]	CO5	L5
	j	State Green's Theorem	[2M]	CO5	L1

PART-B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	BL
2.	a	Solve $x \frac{dy}{dx} + y = \log x$	[5M]	CO1	L3
	b	Solve $(x^4 e^x - 2mx y^2)dx + 2mx^2y dy = 0$	[5M]	CO ₁	L3
		OR			
3	a	Solve $\frac{dy}{dx}$ + ycosx = y^3 sin2x	[5M]	CO1	L3
	b	A body is originally at 80°C and cools down to 60°C in 20	[5M]	CO1	L1
		minutes. If the temperature of the air is 40°C, find the temperature of the body after 40 minutes.			
		temperature of the oddy after to infinite.			

			1
1	Cada	20MA201BS	1
ublect	Code:	ZUIVIAZUIDS	1

CI'	17		T	
•	н,	-		

HT NO:	7	R		

1					
4	a	Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$	[5M]	CO2	L3
	b	$Solve (D^2 - 3D + 2)y = \sin 2x$	[5M]	CO2	L3
		OR			
5	a	Solve by the Method of Variation of Parameters, $(D^2 - 2D)y = e^x \sin x$	[5M]	CO2	L3
	b	$Solve(D^2+4)y = e^x Sinx$	[5M]	CO2	L3
6	a	Evaluate $\iint xy(x+y)dxdy$ over the region R bounded by	[5M]	CO3	L5
		$y=x^2$ and $y=x$			
	b	Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dy dx$ by changing into polar	[5M]	CO3	L5
		co-ordinates			
		OR			

7	Evaluate $\int_0^{log2} \int_0^x \int_0^{x+logy} e^{x+y+z} dz dy dx$	[10M]	CO3	L5
8 a b	Prove that $\nabla \times (\nabla \times \bar{a}) = \nabla(\nabla \cdot \bar{a}) - \nabla^2 \bar{a}$ If $\bar{F} = 3xy\bar{\iota} - y^2\bar{\jmath}$, then evaluate $\int_C \bar{F} \cdot d\bar{r}$ where C is the curve $y = 2x^2$ in the xy-plane from $(0,0)$ to $(1,2)$	[5M] [5M]	CO4 CO4	L5 L5
9	OR If = $4xz \bar{\imath} - y^2 \bar{\jmath} + yz\bar{k}$, then evaluate $\int_{S} \bar{F} \cdot \bar{n} ds$ where S is the surface of the cube bounded by x=0 x=a; y=0 ,y=a; z=0,z=a	[10M]	CO4	L5
10	Verify Gauss Divergence theorem for $\overline{F} = (x^3 - yz)\overline{\iota} - 2x^2y\overline{\jmath} + z\overline{k}$ taken over the surface of the cube bounded by planes $x=y=z=a$ and the co-ordinate planes	[10M]	CO5	L3
11	OR Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by $y=x$ and $y=x^2$	[10M]	CO5	L3

CO : Course Outcomes

BL: Bloom's Taxonomy Levels L1: Remembering L2: Understanding

L 3 : Applying L 4 : Analysing

L 5 : Evaluating L 6 : Creating