SET-II

HT NO:

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. II Semester Supply End Examinations, January-2024 **Ordinary Differential Equations & Vector Calculus** Common to ECE, AIML, CSM, CSC, CSE, IT &CSD

Time: 3 Hours

Max. Marks: 60

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 01 = 10 \text{ Marks}$

			Marks	CO	BL
1.	a	Solve $\frac{dy}{dx} = \frac{x^2 - 2xy}{x^2 - siny}$	1	CO1	3
	b	State law of natural growth.	1	CO1	2
	c	Solve $(D^2 + 2D - 12)y = 0$	1	CO2	3
	d	Find the particular integral of $(D^2 - 4)y = \sin 2x$	1	CO2	1
	e f	Find $L\{sin3tcos2t\}$ State Convolution theorem.	1 1	CO3 CO3	1 2
	g	Find the equation of the tangent plane to the surface $x^2 +$	1	CO4	1
	h	$y^2 + z^2 = 3$ at the point $(1, 1, 1)$ Is the position vector $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ solenoidal? Justify.	1	CO4	
	i	If \bar{F} is irrotational and C is a closed curve then find the value of $\int_{C}^{\cdot} \bar{F} \cdot d\bar{r}$	1	CO5	1
	j	State Green's theorem.	1	CO5	2

PART-B

 $5 \times 10 = 50 \text{ Marks}$

			Marks	CO	BL
2.	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$	5	CO1	3
	b	Find the orthogonal trajectories of the circles	5	CO1	1
		$x^2 + y^2 - ay = 0$, where a is a parameter.			

OR

Subject	Code:	22MA201BS
---------	-------	-----------

SET-II

нт	NO:
	110.

7 R

3	a	Solve $x \frac{dy}{dx} + y = \log x$	5	CO1	3
		A bacterial culture growing exponentially increases from 200	5	CO1	4

A bacterial culture growing exponentially increases from 200 to 500 grams in the period from 6 am to 9 am. How many grams will be present at noon

> CO₂ 3

Solve $(D^2 + D + 1)y = x^3$ a Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$ b

5 5 CO₂ 3

OR

3 CO₂ 5 $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(1+x)]$ 10

Find the Laplace transform of $te^{2t}cos2t$ 5 CO₃ 2 6 5 CO₃ 1 b Find the inverse Laplace transform of $\log \left(1 + \frac{a^2}{s^2}\right)$.

Using Convolution theorem, find $L^{-1}\left\{\frac{1}{(s^2+4s+13)^2}\right\}$ 10 CO₃ 3 7

If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ and $r = |\bar{r}|$, Show that $\frac{\bar{r}}{r^3}$ is solenoidal. 5 CO₄ 2 8

5 b Find the directional derivative of $\emptyset = xy + yz + zx$ at CO₄ 3 (1,2,0) in the direction of vector $\bar{\iota} + 2\bar{\jmath} + 2\bar{k}$

Vetify that $\bar{F} = (6xy + z^3)\bar{\iota} + (3x^2 - z)\bar{\jmath} + (3xz^2 - y)\bar{k}$ is 5 CO₄ 4 9 irrotational vector and hence find the scalar potential such that $\overline{F} = \nabla \emptyset$.

Find $\nabla \times (\bar{a} \times \bar{r})^{-}$, where \bar{a} , is a constant vector. 5 CO₄ 3 b

Find the work done by $\overline{F} = (2x - y - z)\overline{i} + (x + y - z)\overline{j} +$ 5 CO₅ **10** a 3 $(3x - 2y - 5z) \bar{k}$ along a curve C in the xy -plane given by $x^2 + y^2 = 9, z = 0.$

Evaluate by Stokes' theorem $\oint_C (e^x dx + 2y dy - dz)$ where 5 CO₅ 5 b C is curve $x^2 + y^2 = 4$, z = 2.

Verify Divergence theorem for $2x^2y\bar{\iota} - y^2\bar{\jmath} + 4xz^2\bar{k}$ over the region of first octant of the cylinder $y^2 + z^2 = 9$ and x = 110 CO₅ 6 11 2.

CO : Course Outcomes

BL : Bloom's Taxonomy Levels L1: Remembering L 2: Understanding

> L3: Applying L 4: Analysing

L 5: Evaluating L 6: Creating