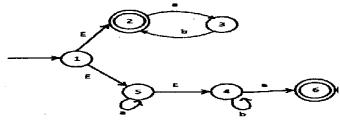
CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B.Tech - III Semester, Regular End Examinations, Feb-2022
Theory of Computation[20CS304PC]
(Common to CSE, CSM, CSD & IT)

Time: 3 Hours

Max. Marks: 70


Answer Any Five Questions All Questions Carry Equal Marks

5 X 14 = 70 Marks

1. a. Convert the given NFA into DFA and check the string acceptance for the input sequence"000111010" by resultant DFA. [7M]

- b. Find Deterministic Finite Automata for the following languages on $\Sigma = \{a,b\}$, $L = \{w : n_a(w) \mod 5 > 0\}$ and show that string "aaaa" is accepted by the resultant automata. [7M]
- 2. a. Define Non-deterministic finite automata? Design NFA to accept the set of strings contains "010" as substring over the alphabet {0,1}. Construct transition table and show that the string "001011" is accepted by resultant NFA. [7M]
- b. Convert the given ε NFA to DFA and check for the string acceptance by resultant DFA for the string: "aabba" [7M]

3. Minimize the given finite automata

[14M]

δ	0	1
→A	В	E
В	U	T
*C	D	Н
D	E	Ι
E	F	ſ
*F	G	В
G	Н	В
Н	ì	C
Ne i	Α	E

4. a. Construct Finite Automata for the given Regular Expression (a+b)*aa(b+a)* [7M]

 				<u> </u>
7	R			

b. State pumping lemma? Prove the given language $L=\{a^nba^mba^{n+m}\mid n,m>=1\}$ is non-regular language? [7M]

- 5. a. Construct PDA for the language L={WW^R| W€(0+1)*}.Check whether it is deterministic or not. [7M]
- b. Show that the following grammar is ambiguous with respect to the string aaabbabbba.

S→ aB | bA

 $A \rightarrow aS | bAA | a$

 $B \rightarrow bS \mid aBB \mid b$

[7M]

6. a. Write the procedure to convert CFG to PDA and also convert the following CFG to PDA.

[7M]

S→ aABB | aAA

A→ aBB | a

B→ bBB | A

 $C \rightarrow a$

b. Consider the following grammar

[7M]

 $E \rightarrow E+T \mid T$

T→T*F | F

 $F \rightarrow (E) | a | b | c$

and consider the following string (a+b+c*a) and constuct

- Left most derivation
- ii. Right Most Derivation
- 7. a. Design a Turing Machine to accept the following language L= { 0ⁿ1ⁿ | n >=1} [7M]
 b. List and explain Decision properties of Context free languages. [7M]
- 8. a. State whether the following instances of PCP has a solution. It is presented as two lists A and B, and the *i*th strings on the two lists correspond for each I = 1, 2, A = (001, 01, 110); B = (110, 010, 00). [7M]
- b. Explain briefly about P,NP,NP-Hard and NP-Complete problems with examples. [7M]

HT NO: 7 R

CMR TECHNICAL CAMPUS UGC AUTONOMOUS

B. Tech. III Semester Regular/Supply End Examinations, Feb-2023

Theory of Computation
Common to CSE, IT, CSM, CSD, CSG, AIML

Time: 3 Hours

Max. Marks: 70

Note

i. This Question paper contains Part- A and Part- B.

ii. All the Questions in Part A are to be answered compulsorily.

iii. All Questions from Part B are to be answered with internal choice among them.

**** PART-A

			10 X 02 = 20 Marks			
			Marks	CO	BL	
1.	a	Draw the transition diagram for the DFA accepting all strings with a substring 01.	2	CO1	L 3	
	b	Formally define NFA.	2	CO1	L 1	
	c	Write a regular expression for even number of a's and even number of b's of a string $w = \{a, b\}^*$.	2	CO2	L 3	
	d	State pumping lemma for regular languages.	2	CO2	L 1	
	e	Convert the following CFG to push down automaton: $S \rightarrow aS \mid bS \mid a \mid b$	2	CO3	L 3	
	f	Give the formal definition of PDA.	2	CO3	L 1	
	g	What are the required fields of an instantaneous description of a Turing machine?	2	CO4	L 2	
	h	Differentiate multihead and multitape Turing machine	2	CO4	L 2	
	i j	When is a language L recursively enumerable? Define NP hard and NP completeness problem.	2 2	CO5	L 2 L 1	
		PART-B	5 X 10 =	50 Marks	•	
			Marks	CO	BL	
2.		Prove that, if L is accepted by an NFA with ε-transitions, then L is accepted by an NFA without ε-transitions.	10	CO1	L 2	
3		OR Consider the following ε-NFA	10	CO1	L 3	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e e te Pisto es t		

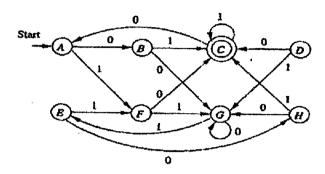
- a) Compute the ε-closure of each state
- b) Convert the automaton to DFA.

TT2	II_{-}	

TH	NO:
A.A. A.	TIO.

7 R

4	a	Discuss the basic approach to convert from NFA to regular expression. Illustrate with an example.	· _P . 5	CO2	L 2
	b	Show whether the following language is regular or not. $L = \{a^n b^n a^n \mid n > 0\}$	5	CO2	L 3


OR

5 Minimize the following automaton:

10 CO2

L 3

L 3

6
$$S \rightarrow A1B$$

10 CO3 L 3

- $A \to 0A \mid \epsilon$
- $B \rightarrow 0B \mid 1B \mid \epsilon$
- a) Show that the grammar is unambiguous
- b) Find a grammar for the same language that is ambiguous, and demonstrate its ambiguity.

OR

- Design a PDA to accept the set of all strings of 0's and 1's 10 CO3 with an equal number of 0's and 1's.
- 8 Consider the following CFG where S is the start variable: 10 CO4 L 3

 $S \rightarrow aAa \mid bBb \mid \epsilon$

- $A \rightarrow C \mid a$
- $B \rightarrow C \mid b$
- $C \rightarrow CDE \mid \epsilon$
- $D \rightarrow A \mid B \mid ab$
- a) Eliminate ε productions
- b) Eliminate any unit productions in the resulting grammar.
- c) Eliminate any useless symbols in the resulting grammar.
- d) Put the resulting grammar into Chomsky normal form.

OR

9 Design a Turing machine to compute addition of two positive 10 CO4 L 3 integers.

mtegers.

Prove that Universal language is recursively enumerable but 10 CO5 L 2

not recursive

OR

Define PCP and prove that Post's Correspondence Problem is 10 CO5 L 2 undecidable with one example.

SET-I

7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B.Tech - III Semester, Supply Examinations, July-2022 Theory of Computation [20CS304PC] (Common to CSE, CSD, CSM & IT)

Time: 3 Hours

Max. Marks: 70

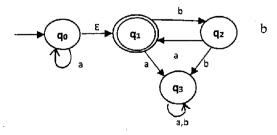
Answer Any Five Questions All Questions Carry Equal Marks

5 X 14 = 70 Marks

- 1. a. Consider the following Transition system and test the acceptance of strings given below
 - i. 110001

[7M]

ii. 110101


Z	Input		
State	0	1	
→ q ₀	q ₂	Q 1	
qı	q3	q ₀	
q ₂	qa	Q3	
q 3	q1	q 2	

b. Construct a DFA equivalent to $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1, 2\}, \delta, q_0, \{q_3\})$, where δ is given in the following Transition table. [7M]

Σ		Input					
State	0	1	2				
→ q₀	{ q1, q4}	Q4	$\{q_2, q_3\}$				
q ₁	-	q4	-				
q ₂	-	-	{ q ₂ , q ₃ }				
di	-	Q4	-				
Q4	-	-	-				

2. Convert the following NFA with E-moves into an equivalent DFA.

[14M]

3. a. State and prove Arden's theorem.

[7M]

b. Construct a Finite Automata for the Regular Expression given below

(0+1)*(00+11)(0+1)*

[7**M**]

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. III Semester Supply End Examinations, February-2024 Theory of Computation

Common to CSE, IT, CSM, CSD, CSG, AIML

Time: 3 Hours Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

		PARI-A			
			$10 \times 02 = 1$	20 Marks	
			Marks	CO	BL
1.	a	Construct deterministic finite automata to recognize odd	2	CO1	L 3
	b	number of 1's and even number of 0's? Differentiate NFA and DFA.	2	CO1	L 2
	С	Write regular expression to recognize the set of strings over {a, b} having odd number of a's and b's and that starts with	2	CO2	L 3
	d	'a'. State pumping lemma for regular languages.	2	CO2	L 1
	e f	When do you say a CFG is ambiguous? Draw pushdown automata to accept all palindromes of odd length.	2 2	CO3 CO3	L 2 L 3
	g h	Define Turing machine and give its configuration. State Chomsky normal form theorem.	2 2	CO4 CO4	L 2 L 1
	i	If L and its complement are recursively enumerable languages, prove that L is recursive.	2	CO5	L 2
	j	Define the recursive primitive operations. PART- B	2	CO5	L 1
			$5 \times 10 =$	50 Marks	
			Marks	CO	BL
2.		Prove that for every L recognized by an NFA, there exists an equivalent DFA accepting the same language L.	10	CO1	L 2
		OR			
3		Consider the following ε -NFA	10	CO1	L 3

		a		
$\rightarrow p$	0	{p}	{q}	$\{r\}$
$rac{ ightarrow p}{q}$	{p}	{q}	$\{r\}$	(m)
***	{q}	\ \r\	10	{P}

- a) Compute the ε-closure of each state
- b) Give all the strings of length three or less accepted by the automaton.
- c)Convert the automaton to DFA.

Subject Code:	20CS304PC SET-I HT NO:	7 R		
	Tribo.	/ 1		
4	Prove that regular expressions are closed under union, intersection and Kleene closure.	10	CO2	L2
5	Find a minimum State Deterministic Finite Automata recognizing the language corresponding to the regular expression $(0*10+1*0)(01)*$.	10	CO2	(E
6	Consider the grammar S→ As aSbS ε Show in particular that the string aab has two a) Parse trees b) Leftmost Derivations c) Rightmost Derivations	10	CO3	L 3
7	OR Given the PDA $P = (\{q, p\}, \{0,1\}, \{Z0, X\}, \delta, q, Z0, \{p\})$ with the following transition functions: $\delta(q, 0, Z0) = \{(q, XZ0)\}$ $\delta(q, 0, X) = \{(q, XX)\}$ $\delta(q, 1, X) = \{(q, X)\}$ $\delta(q, \epsilon, X) = \{(p, \epsilon)\}$ $\delta(p, \epsilon, X) = \{(p, \epsilon)\}$ $\delta(p, 1, X) = \{(p, \epsilon)\}$ $\delta(p, 1, Z0) = \{(p, \epsilon)\}$ Show all reachable ID's when a) $w = 01$ b) $w = 0011$ c) $w = 010$	10	CO3	L3
8	Consider the following CFG where S is the start variable: $S \rightarrow ASB$ $A \rightarrow aASA \mid a \mid \epsilon$ $B \rightarrow SbS \mid A \mid bb$ a) Eliminate ϵ productions b) Eliminate any unit productions in the resulting grammar. c) Eliminate any useless symbols in the resulting grammar. d) Put the resulting grammar into Chomsky normal form.	10	CO4	L 3
9	OR Design a Turing machine to recognise the language $\{0^n1^n0^n\}$ where $n{\ge}1$	10	CO4	L 3
10	State and prove that "Diagonalization language is not recursively enumerable".	10	CO5	L 2
11	OR (i)Show that Halting problem is undecidable. (ii)Compare Tactable and untactable problems.	10	CO5	L 2