HT NO: | 7 R |

CMR TECHNICAL CAMPUS UGC AUTONOMOUS

B. Tech. VII Semester Regular End Examinations, November-2023 Machine Learning

Common to CSM &CSD

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a b	Why prefer short Hypothesis? List out the issues in Decision Tree Learning.	02 02	CO1 CO1	L1 L1
	c d	Define increment gradient descent. What is standard deviation?	02 02	CO2 CO2	L1 L1
	e f	Define Probability density function. State Bayes theorem	02 02	CO3	L1 L1
	g h	Short notes on Uniform crossover. State Two-point crossover	02 02	CO4 CO4	L1 L1
	i	What is the essential difference between analytical and inductive learning methods?	02	CO5	L1
	j	What is inductive Bias in explanation-based learning?	02	CO5	L1

PART-B

5 X 10 = 50 Marks

		i gira. Ta	Marks	CO	\mathbf{BL}
2.		Discuss in detail about candidate-elimination learning algorithm.	10	CO1	L2
		OR			
3		Briefly explain the need of inductive bias in Decision Tree Learning.	10	CO1	L2
4		Illustrate the Back Propagation Algorithm. OR	10	CO2	L2
5	a	Explain in detail about Gradient Descent Algorithm.	05	CO2	L2
	b	Short notes on Binomial Distribution.	05	CO2	L2
6		Explain the Maximum Likelihood Hypotheses for predicting	10	CO3	L2

			CET II			T .
Sı	ubject (Code	e: 20AI702PC SET-II HT NO:	7 R		-
			probabilities. OR			-
	7	a b	Explain the Mistake Bound for the FIND-S Algorithm. Elaborate the Distance-Weighted Nearest Neighbor Algorithm.	05 05	CO3 CO3	L2 L2
	8	a b	Demonstrate the Baldwin Effect. Apply inverse resolution in propositional form to the clauses $C = A \lor B$, $C1 = A \lor B \lor G$. Give at least two possible results for C_2 .	04 06	CO4 CO4	L2 L3
			OR			
	9	a	Describe Q-Learning algorithm.	10	CO4	L2
	10	a b	Discuss about remarks on explanation-based learning. Explain the Knowledge Level Learning. OR	05 05	CO5 CO5	L2 L2
	11		Elaborate The TANGENTPROP Algorithm with suitable example.	10	CO5	L2
	со		: Course Outcomes			
	BL		: Bloom's Taxonomy Levels L 1 : Remembering L 2 :	Understanding	(

L 3 : Applying

L 5 : Evaluating

L 4 : Analysing

L 6 : Creating

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. VII Semester Supply End Examinations, April-2024 Machine Learning Common to CSM &CSD

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	а	What is entropy? How to compute entropy of a given data?	02	CO1	L1
	b	List out any four applications of Machine Learning	02	CO1	L1
	С	What is Perceptrons?	02	CO2	L1
	d	Define sample error.	02	CO2	L1
	e	State Bayes theorem.	02	CO3	L1
	f	What is Computational complexity?	02	CO3	L1
	g	State Two-point crossover	02	CO4	L1
	h	Contrast the FOIL and FOCL?	02	CO4	L1
	i	List two stages of the KBANN algorithm	02	CO5	L1
	j	Provide an application of explanation-based learning algorithm.	02	CO5	L1

PART-B

5 X 10 = 50 Marks

			Marks	CO	BL
2.		Illustrate the basic Decision Tree Learning Algorithm OR	10	CO1	L2
3	a	Distinguish the Find-S and candidate-eliminate algorithm	05	CO1	L2
3	b	Explain the impact of over fitting in a typical applications of Decision Tree Learning	05	CO1	L2
4		Discuss how multi-layer networks learn using gradient descent algorithm.	10	CO2	L2
		OR			
5		Write the Back Propagation algorithm for feedforward networks containing two layers of sigmoid units.	10	CO2	L3

Subject Code	20AI702PC SET-I HT NO:	7 R		
6	Design the Brute Force Bayesian concept learning algorithm and elaborate	10	CO3	L3
_	OR		002	
7 a	Illustrate Naive Bayes Classifier of Bayesian learning.	5	CO ₃	L2
b	Explain the k-Nearest Neighbor Learning.	. 5	CO3	L2
8	Describe the prototypical genetic algorithm. OR	10	CO4	L2
9	Explain the learning sets of First-Order rules FOIL.	10	CO4	L2
10	Discuss about the Explanation-based Learning of Search Control Knowledge	10	CO5	L2
	OR			
11	Explain the KBANN Algorithm with suitable example.	10	CO5	L2
7				
