CMR Technical Campus

B.Tech Mid Question Bank (R22 Regulation)

Academic Year: Semester:2024-2025

Subject Name: Computer Organization and Architecture

Faculty Name: G Vinesh Shankar, G Divya, P Mounika, S Kiran

PART-A

	MID-I Questions	MID-I Ouestions					
Q.No	Questions	Marks	BL	CO	Unit No		
1	Draw the block diagram of a Register.	2	L1	CO1	I		
2	Draw a block diagram of computer	2	L1	CO1	I		
3	Convert the AB.CD to binary, octal, decimal.	2	L2	CO1	I		
4	Define Register transfer with example.	2	L1	CO1	I		
5	Obtain the l's and 2's complements of the	2	L2	CO1	I		
	following eight-digit binary numbers:						
	10101110; 10000001; 10000000; 00000001.						
6	Define Program Counter and Accumulator.	2	L2	CO1	I		
7	Define Instruction code and Instruction format.	2	L1	CO2	II		
8	Write the differences between hardwired control	2	L1	CO2	11		
	and micro programmed control unit.						
9	Explain Instruction set Completeness.	2	L2	CO2			
10	Write three types of Instruction formats.	2	L1	CO2	II		
11	Write a short note on stored program	2	L1	CO2			
	organization.						
12	Explain the importance of control memory.	2	L2	CO2	II		
13	Write Zero address Instructions for the	2	L1	CO3			
	expression A*B+C.	ΔN	IDI	15			
14	What are the differences between addressing	2	L1	CO3	111		
	modes and instruction formats?	NV.	ΕN	T			
15	What is Indexed Addressing Mode?	2	L1	CO3			
	······································						
	MID-II Questions	-			-		
16	Draw the Hardware for sign Magnitude	2	L1	CO3			
	Addition and Subtraction.						
17	What is overflow in computer arithmetic?	2	L1	CO3			
10				600			
18	List all possibilities of addition and subtractions	2	L1	CO3			
	of two number.						
19	What is write back, write through, in cache?	2	L1	CO4	IV		
19	what is write back, write through, in cache?	۷ ک	LT	CU4	IV		

20	What do the major differences exist in for the communication between central computer and peripheral?	2	L1	CO4	IV
21	Draw the RAM and ROM block diagrams.	2	L1	CO4	IV
22	What is Cycle stealing in DMA?	2	L1	CO4	IV
23	What is auxiliary memory? Give two examples.	2	L1	CO4	IV
24	What is interrupt?	2	L1	CO4	IV
25	Write one solution for cache coherence problem.	2	L1	CO5	V
26	What are the characteristics for multi- processors?	2	L1	CO5	V
27	Write two solutions to handle data dependency in pipeline Hazards?	2	L1	CO5	V
28	How do we establish communication link from one processor to another processor in Hyper cube inter connection?	2	L1	CO5	V
29	What is pipeline ?	2	L1	CO5	V
30	Draw the instruction pipeline grant chart without any hazards	2	L1	CO5	V

PART-B

	MID-I Questions					
Q.No	Questions	Marks	BL	CO	Unit No	
1	Explain about Computer Architectur <mark>e, Comp</mark> uter	4	L2	CO1	I	
	Organization, Computer Design.		10			
2	Explain about Logic Micro Operations.	4	L1	CO1	I	
3	Explain about Arithmetic Logic Shift Unit.	4	L5	CO1	I	
4	What is micro-operation. Write different types of it.	4	L1	CO1	I	
5	What are the differences between fixed point representation and floating-point representation	4	L2	CO1	I	
6	Draw and explain Arithmetic circuit	4	L1	CO1	I	
7	Conversion of Decimal into Binary i) 595.6875 ii) 8795, Decimal into Hexadecimal i)1595 ii)	8	L3	CO1		
	8795, Decimal into octal i)142 ii) 763					
8	Explain about Bus and memory transfer.	8	L1	CO1	I	
9	Explain about 16 Logic Micro operations?	8	L6	CO1	I	
10	Draw Control unit of a basic computer	4	L1	CO2	II	
11	What are the different types of Computer Registers and write their function.	4	L1	CO2	II	
12	Explain about Instruction code.	4	L2	CO2	II	
13	Explain about Micro Program example.	4	L2	CO2	I	
14	Discus about Instruction Cycle.	4	L6	CO2	II	
15	Explain and Input Output instructions.	4	L1	CO2	II	
16	Discus different types memory reference instructions	8	L6	CO2	II	
17	Explain program interrupt and interrupt cycle.	8	L1	CO2	II	

18	Discuss about timing and control unit.	8	L2	CO2	II
19	Explain Instruction formats.	4	L2	CO3	Ш
20	Explain Control Word.	4	L2	CO3	
21	Explain any 4 addressing modes.	4	L2	CO3	
22	Explain general register organization with example.	4	L2	CO3	III
	MID-II Questions				
23	Draw Hardware Implementation for Booth's	4	L2	CO3	III
	Multiplication Algorithm and also Evaluate				
	Booth's Multiplication for the following				
	Multiplicand BR=10111, Multiplier QR=10011?				
24	Explain overflow and underflow in computer	4	L2	CO3	
	rithmetic using Examples.				
25	Explain the Addition and Subtraction algorithm	4	L1	CO3	
	along with its hardware implementation.				
26	Draw the flow chart of Booths algorithm.	4	L2	CO3	III
27	Explain Cache direct mapping technique.	4	L2	CO4	IV
28	Explain Cache memory set associative mapping.	4	L2	CO4	IV
					n <i>i</i>
29	Explain Cache Initialization.	4	L2	CO4	IV
20	Describe Memory Hieronehy	1	L6	CO4	IV
30	Describe Memory Hierarchy.	4	LO	C04	IV
31	Explain Asynchronous data transfer.	4	L2	CO4	IV
51	Explain Asylemonous data transfer.			001	
32	What Priority Interrupt. Explain it with neat	4	L1	CO4	IV
	diagram.				
33	What is Content Addressable Memory. Explain	8	L1	CO4	IV
	its working with neat diagram.	AIV		J 12	
34	Explain the development idea of Cache Memory.	8	L2	CO4	IV
	EXPLOREIOT	N V	$\subset \mathbb{N}$		
35	What is DMA ?, Describe about it with neat	8	L1	CO4	IV
	diagram and compare Strobe control method and				
	Handshaking method in Asynchronous Data				
	Transfer.				
36	Write short notes on Vector Processing.	4	L1	CO5	V
37	What is parallel processing. Explain Arithmetic	4	L1	CO5	V
	pipeline.				
38	Explain the interconnection structure Multistage	4	L2	CO5	V
	Network.				
39	Explain Cache Coherence problem with an	4	L2	CO5	V
	example.				
40	Write the differences between RISC & CISC.	4	L2	CO5	V

41	Explain Hypercube interconnection structure	4	L2	CO5	V
42	Explain different types cache memory mappings	8	L2	CO5	V
43	Define and List out Interconnection Structures in	8	L2	CO5	V
	Multiprocessor System and Elaborate Timeshared				
	Common bus and crossbar switch				
44	Explain about the Pipeline organization for floating	8	L1	CO5	V
	point addition and subtraction.				

