CMR Technical Campus

B. Tech Mid Question Bank (R22 Regulation)

Academic Year: 2024-2025

Semester: III

Subject Name: COSM

Subject Code: 22MA301BS

Faculty Name: Dr. K. Bhagya Lakshmi

PART-A

MID-I Questions										
Q.	Questions	- Marks	BL	CO	Unit No					
No										
1	Define random variable.	2	L1	CO1						
2	Define, Discrete, Continuous random	2	L1	CO1						
	variable with example.									
3	Define covariance of random variables.	2	L2	CO1	I					
4	If x is a discrete Random variable, Show	2	L1	CO1	I					
	that $E(a x + b) = a E(x) + b$									
5	If X & Y is a random variable then Prove	2	L2	CO1	I					
	E[X+K]= E[X]+K ,where 'K' constant									
6	Describe the measures of continuous	2	L2	CO1	I					
	probability distribution.									
7	Derive the mean of Poisson distribution.	2	L1	CO2	II					
8	Classify properties of normal distribution	2	L1	CO2	Π					
9	Explain binomial distribution, Poisson	2	L2	CO2						
	distribution.	tΔR	1 D	115						
10	Write two applications of Normal	2	L1	CO2	- 11					
	distribution.									
11	Determine the binomial distribution for	2	L1	CO2	II					
	which the mean is 4 and variance 3.find									
	$p(X \ge 1).$									
12	Find the standard deviation of a binomial	2	L2	CO2	II					
	distribution with $n=12$ and $p=0.6$.									
13	Define population, sample, parameter &	2	L1	CO3						
	statistics.									
14	(i)Define small sample, large sample.	2	L1	CO3						
	(ii) What is the value of the correction factor									
	if n=5, N=200.									
15	Explain about Central limit theorem.	2	L1	CO3	III					
	MID-II Questions	1	r	1	1					
16	Demonstrate Properties of t- distribution.	2	L2	CO3						

17	Define (i) F – test (ii) chi-square test.	2	L1	CO3	III
18	Find t values at level of significance 0.05 (one	2	L1	CO3	III
	tail test)				
	i) degree of freedom $v = 16$				
	ii) degree of freedom $v = 10$.				
19	Define Estimate and Estimator. Give example.	2	L1	CO4	IV
20	Explain Types of Estimation and properties of	2	L2	CO4	IV
	Estimation.				
21	Define Correlation and Types of Correlation.	2	L1	CO4	IV
22	Define Rank Correlation Coefficient and	2	L1	CO4	IV
	Properties.				
23	Explain regression,	2	L2	CO4	IV
24	Explain correlation coefficient.	2	L2	CO4	IV
25	Define One tail and Two Tail Test	2	L1	CO5	V
26	Explain null hypothesis and alternative	2	L2	CO5	V
	hypothesis.				
27	Define type I and type II errors.	2	L1	CO5	V
28	Define Critical Region and Level of significance.	2	L1	CO5	V
29	Define Student's t -test, F-Test	2	L1	CO5	V
30	Explain Chi -Square Test as a Goodness of	2	L1	CO5	V
	Fit and Conditions				

			-		٦	1	PA	RT-B	1	1				
						N	11D-I	Questic	ons			<u>.</u>	1	1
Q.No					Que	estion	IS	1	١.		Mar ks	BL	CO	Unit No
1	A ran	ndom '	varia	ble 2	X has	s the	follov	ving pr	obabili	ty	8	L5	CO1	I
	X P(x)	0	1 K	2 2k	3 2k	4 3k	$\frac{5}{k^2}$	6 2k ²	7 7k ² k	+	M	Ρl	JS	
	Evalı p(0≤	ıate (i X≤4)) k (i (iii)	ii) P(mea	X<6 n (iv),P() 7) var	(≥6), riance.	P(0 <x< td=""><td><5) and</td><td>1</td><td>VE</td><td>Ν</td><td>Т</td><td></td></x<>	<5) and	1	VE	Ν	Т	
2	A rar funct	idom [•] ion:	varia	ble 2	X has	s the	follov	ving pr	obabili	ty	4	L5	CO1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						6							
	P(x)	k	3k		5k		7k	9k	11k	13 k				
	Evalı P(0<	uate (i X<5)() k (i iii)M	ii) P(Iean	X<3 (iv)), P(Varie	x≥3) a ence	and						
3	Supp	ose a	conti	inuoı	us rai	ndon	n varia	able x ł	nas the		8	L2	CO1	I

	probability density				
	$f(x) = kx^2e^{-x}$, for x>0, Find (i) K (ii) Mean (iii)				
	variance.				
4	If a random variable has the probability density	4	L2	CO1	I
	function $f(x) = \{k(x^2 - 1), -1 \le x \le 3\}$.				
	0, elsewhere				
	Find value of k and $p(\frac{1}{2} \le x \le \frac{5}{2})$.				
5	Let X denote the maximum of the two numbers	4	L5	CO1	I
	that appear when a pair of fair dice is thrown once.				
	Determine the (i) Discrete probability distribution				
	(ii) Expectation (iii) variance.				
6	A sample of 4 items is selected at random from a	4	L1	CO1	I
	box containing 12 items of which 5 are defective.				
	Find the expected number E of defective items.				
7	Probability density function of random variable x	8	L5	CO1	I
	$(-\infty) = \int_{-\infty}^{1} \sin x, \text{ for } 0 < x < \pi$				
	$1s f(x) = \begin{cases} 2 \\ 0 & for x < 0 \end{cases}$				
	Evaluate mean mode and median of the				
	distribution and				
	Find the probability between 0 and $\frac{\pi}{2}$				
	$\frac{1}{2}$		1.4	601	
ð	A random variable X is defined as the sum of the	4	LL	01	I
	numbers on the faces when two dice are thrown.				
0	If V is a continuous Dondom Variable Show That	1	11	CO1	
9	If A is a continuous Kandom variable Show That $E(aY+b)=aE(Y)+b \ e \ V(aY+b)=a^2V(Y)$	4	LT	01	I
	$E(aA+b)=aE(A)+b \ll V(aA+b)=a V(A)$	5.01		IC	
	LECHNICAL CA	IVI		10	
10	Ten coins are thrown simultaneously. Find the	4	11	CO2	11
	probability of getting at least (i)One head(ii)Six	VE	N		
	heads (iii)eight heads	Y 14	1.2		
	neuds (in)eight neuds				
11	If X is a normal variate with mean 30 and standard	4	L1	CO2	11
	deviation 5. Find the probabilities that i) $26 < X < 40$				
	ii) X>45				
12	If x is a Poisson variant such that	4	L5	CO2	II
	3 p(x=4) = 1/2(P(x=2)+P(x=0))		-		-
	Evaluate (i) The mean of x (ii) P ($x < 2$).				
13	The probability of a defective bolt is 1/8, find (i)	4	L1	CO2	II
	the mean (ii) The variance for the distribution of				
	defective bolts of 640.				

14	20 % of items produced from a factory are	4	L5	CO2	II
	defective. Evaluate the probability that in a sample				
	of 5 chooser at random (1) none is defective (11) and is defective (iii) $r(1 \le y \le 4)$				
	one is defective (iii) $p(1 < x < 4)$.				
15	In a normal distribution 40% of the items are under	4	L1	CO2	
	30 and 15% are over 60. Find the mean and				
	variance of the distribution				
16	The probabilities of a man hitting a target is 1/3 .If	8	L1	CO2	11
	he fires 6 times, find the probability that he fires				
	(i) at the most 5 times (ii) exactly once (iii) At				
	least two times.				
17		8	L5	CO2	II
	Determine Poisson frequency distribution for the following data				
	\mathbf{x} 0 1 2 3 4	-			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
18	Derive the mean and variance of a Binomial	8	L6	CO2	11
	distribution				
19	A population consist of 1.2.3.4.5.6 Consider all	4	11	CO3	
	samples of size 2 which can be drawn without				
	replacement.	1			
	(a)Find mean , standard deviation of the				
	population;		1		
	(b) The mean of sampling distribution of means;		S		
	(c) The standard deviation of sampling		S.		
20	distribution of means.	1	11	CO3	
20	ii the population is 2,3,6,8,11. Consider all samples of size 2 which can be drawn with	4			
	replacement.	D.A.I	DI	IC	
	(a)Find mean , standard deviation of the	UVI I		10	
	population.				
	(b) The mean of sampling distribution of means.	VE	N	Τ.	
	(c) The standard deviation of sampling				
	distribution of means.				
21	The mean of certain normal nonulation is equal	4	L1	CO3	
	the standard error of the mean of the samples of				
	64 from that distribution Find the probability				
	that the mean of the sample size 36 will be				
	negative.				
22	A random sample of size 100 is taken from an	4	L1	CO3	
	infinite Population having the mean $\mu =$				
	76 & variance $\sigma^2 = 256$. What is the probability				
	that \bar{x} will be between 75 &78				

MID-II Questions										
23	What is the effect on standard error , if a sample	4	L1	CO3						
	is taken from an infinite population of sample size									
	is increased from 400 to 900.									
24	Explain t-Distribution, properties and Applications of	4	L2	CO3	III					
	t-Distribution and Explain Degrees									
	Of Freedom.									
25	Explain F-Distribution, properties and Applications of	4	L2	CO3	111					
	F-Distribution									
26	Explain chi square - Distribution properties and	Δ	12	CO3	111					
20	Applications and conditions	-	LZ	005						
	Applications and conditions									
27	Find Karl Pearson's coefficient of correlation from the	8	L1	CO4	IV					
	following data									
	Wage 10 10 10 10 10 99 97 98 96 9									
	S 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
	of 93 93 97 93 97 95 92 95 94 90 9									
	living									
28	Evaluate rank correlation coefficient for the	4	L5	CO4	IV					
	tollowing data $(2 - 1)$									
	X 68 64 75 50 64 80 75 40 55 64									
	y 62 38 68 43 81 60 68 48 30 70									
29	Examine the regression equations of Y on X	8	L2	CO4	IV					
	from actual means of X and X									
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\sim								
	(Rs)									
	Amo 40 38 43 45 37 43			hanne -						
	unt									
	Dem	B. 81		1.00						
	ande	M	РΙ	JS						
	d C V V	-								
30	Examine the regression equations of Y on X from the data given below, taking deviations	8	L2	CO4	IV					
	from actual means of X and V	A C	1.4							
	Price 10 12 13 12 16 15									
	(Rs) (Rs) (Rs) (Rs) (Rs) (Rs) (Rs) (Rs)									
	Amo 40 38 43 45 37 43									
	unt									
	Dem									
	ande									
21			1.4	CO 4	1) /					
31	I ne mean and s.d. of population are 11,795 and	4	L4	CO4	IV					
	14,054 respectively if n = 50. Construct 95%									
22	confidence interval for the mean.	Л	11	CO4	1\7					
52	A random sample of size 100 has a standard deviation of 5 what can used about maximum error with O_{10}^{-0}	4	LI	CO4	IV					
1	or 5 what can a say about maximum error with 95%									

	confidence.			-		0.11					
33	Construct a	4	L3	CO4	IV						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							-			
	X	1	2	3	4		5	-			
		14	21	40	55	1	68			604	
34	By the meth	hod of le	ast square	es Cons	truct a p	arat	ola	4	L3	C04	IV
	y = a + bx +	$+cx^2$ for	the follo	owing d	ata						
		-									
	X ()	l 1.0	2	3		4	-			
		l	1.8	1.3	2.5		6.3	-			
35	Find the co	efficient	of correla	ation to	the foll	owir	ng data	4	L1	CO4	1V
	X 12	9	8	10	11	13	7				
	Y 14	8	6	9	11	12	3				
36								4	L3	CO5	V
	In a sample										
	eaters and	the rest	are whea	t eaters	<mark>. Can</mark> w	e as	sume				
	that both ri	ce and v	vheat are	equally	<mark>, pop</mark> ula	r in	this	1			
	state at 1%										
	significance	e of singl	e proport	tion			1			0.05	
37	A sample of	f 64 stud	ents have	e a mea	n weigh	t of	70kgs.	4	L2	CO5	V
	Can this be	regarde	d as sam	ole from	i a popu	ilatio	on				
	with mean	weight 5	6kgs and	standa	rd devia	tion	of			h	
	25kgs. Expla	ain the r	iypothesi	s for sin	gie mea	in.					
38	complex of	ctudont	c woro dr	own fre	m two			1	16	CO5	V
50	samples of	student	s were ur m thoir w	awin inc voights i	n kilogr	ame	moon	4		COS	v
	and S D are			_							
	sample test	1.0.00	1.1	100							
	means	VE	114								
		MF	AN	S.D		SA	MPLE	-			
				0.0		SE	ZE				
	University	-A 55		10		40)0	1			
	University	-B 57		15		10	0	1			
39	A random s	ample o	f 400 mei	n and 6	00 wom	en ii	na	4	L6	CO5	V
	locality wer	re asked	whether	they w	ould like	e to	have a				
	bus stop ne	ar their	residence	, e. 200 m	nen and	325					
	women are	women are in favour of the proposal test for the									
	significant o	differend	e betwee	en two	proport	ions	at 5%				
	level.										
40	A Random	sample of	of 10 boys	s had th	e follow	ing	I.Q.'s	8	L1	CO5	V

	70,120,110	0,101,8	38,83,95,								
	a. Do these	e data s	support t								
	population	n mean	I.Q. of 1								
	b. Find a re	ble range	ean								
	I.Q. values of sample of 10 boys lie										
41	Two comp	pare tw	o kinds o	of bumpe	er guards	, 6 of e	ach	8	L3	CO5	V
	kind were	moun	ted on a	car and	then the	car was	run				
	into a conc	crete w	all. The	follown	ng are the	e costs o	f				
	repairs	107	1.40	100	165	100	110				
	Guard I	107	148	123	165	102	119				
		124	117	110	1.7.1	122	100				
	Guard I	134	115	112	151	133	129				
	Lise the 0.0	01 1000	lofsion	ificance	to test fo	r tho					
	difference	hetwe	en two se	ample m	eans is s	ionifican	t				
	uniterence	00000	en two st	ampie m		Igiiiiieaii					
42	The Mean	1 of two	o r <mark>andon</mark>	1 sample	s of size	s 9 and 7	are	4	L4	CO5	V
	196.42 and	d 198.8	32 respec	tively. T	The Sum	of square	es of				
	the deviati	ions fro	om the m	ean are	26.94 an	d 18.73					
	respectivel	ly. Car	the sam	ple be co	onsidere	d to have	;		1		
	been draw	n from	the Sam	ne norma	l popula	tion. Tes	t for				
	the signific	cance			-						
43	Pumpkins	were g	grown un	der two	experim	ental		4	L4	CO5	V
	conditions	s. Two	Random	samples	of 11 ar	nd 9					
	pumpkins,	, show	the sam	ple stanc	lard dev	iations o	f				
	their weigh	hts as ().8 and 0	.5 respec	ctively. A	Assuming	g		10		
	that the we	eight d	istributio	ons are no	ormal, te	st for	_				
	hypothesis	s that			w		_				
44	From the f	followi	equal.	find who	ther the	e is any	_	0	12	CO5	V
44	significant	t liking	in the h	abit of ta	king sof	t drinke		0	LJ	005	v
	among the	e catego	pries of e	employee	es. Apply	z chi- sai	are	a	-	1.00	
	test .	, outog				om squ		IN I	μų	1.55	
		10.1	Em	ployees		100	10. I	100	10.1	100	
	Soft drin	nks (Clerks	Tea	achers	Offic	ers	VE	R		
	Pepsi	1	0	25		65					
	Thums u	ip 1	5	30		65					
	Fanta	5	0	60		30					