Department of CSE

B. Tech. Mid Question Bank (R22 Regulation)

Academic Year: 2024-25

Semester: V

Subject Name: Design Analysis & Algorithms

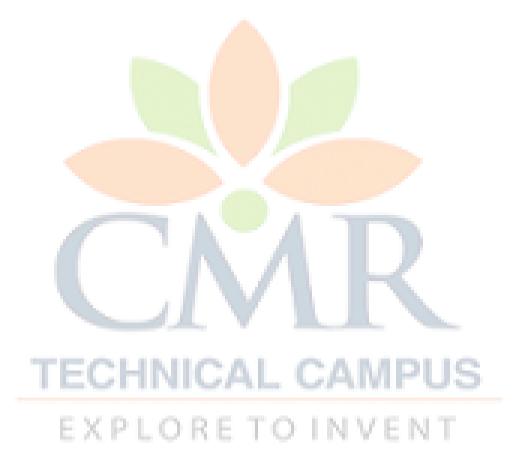
Faculty Name: Dr. J. Narasimharao

MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No	
1	Describe the characteristics of the Algorithms.	2M	L1	CO1	1	
2	Define the time complexity & Space complexity.	2M	L1	CO1	1	
3	List the asymptotic notations.	2M	L1	CO1	I	
4	Explain about design steps of an algorithm	2M	L1	CO1	1	
5	Define union and Find algorithm.	2M	L1	CO1	I	
6	Define Articulation Point.	2M	L1	CO1	I	
7	Write the Applications of Divide & Conquer technique.	2M	L1	CO2	II	
8	Give the general plan of divide and conquer algorithms.	2M	L1	CO2	П	
9	Difference between Binary Search and Binary Search Tree.	2M	L2	CO2	II	
10	Solve the below Job sequencing problem using Greedy method N=5, profits (p1,p2,p3,p4,p5) = (20,15,10,5,1) and deadlines $(d1,d2,d3,d4) = (2,2,1,3,3)$.	2M		CO2	S	
11	Define Minimum Cost Spanning Tree with an example.	2M	11	CO2	II	
12	Write the Applications of Greedy Method.	2M	L1	CO2	II	
13	What you mean by dynamic programming?	2M	L1	CO3	Ш	
14	Define optimal binary search tree with an example.	2M	L1	CO3		
15	Define the 0/1 Knapsack problem.	2M	L1	CO3	111	
	MID-II Questions					
16	Define Reliability Design.	2M	L1	CO3	111	
17	Compare Greedy with Dynamic programming method.	2M	L2	CO3	Ш	

PART-A

18	What is a Dynamic programming? write the Applications of Dynamic programming.	2M	L1	CO3	
19	Write an applications of Backtracking.	2M	L1	CO4	IV
20	Write control abstraction for backtracking.	2M	L1	CO4	IV
21	State the principle of Backtracking.	2M	L1	CO4	IV
22	Differentiate live node and dead node.	2M	L2	CO4	IV
23	Give brief note on Graph coloring.	2M	L1	CO4	IV
24	List out the Branch and Bound Techniques.	2M	L1	CO4	IV
25	What is NP-Hard?	2M	L1	CO5	V
26	State and prove cook's theorem.	2M	L1	CO5	V
27	Define Class P.	2M	L1	CO5	V
28	Define P, NP, NP-Complete, and NP- Hard.	2M	L1	CO5	V
29	What is the satisfiability problem.	2M	L1	CO5	V
30	Define Non Deterministic Machine.	2M	L1	CO5	V

PART-B


	PART-B						
	MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No		
1	Write an Algorithm for Factorial of n numbers and calculate the space complexity and Time complexity.	4M	L3	CO1	I		
2	Explain Disjoint set operations with examples.	4M	L1	CO1	I		
3	Describe the Connected Components and Bi- Connected Components.	4M	L1	CO1	I		
4	Define Spanning Tree and explain with an example.	4M	L1	CO1	I		
5	Discuss about pseudo code for expressing algorithms.	4M	L2	CO1	I		
6	Write short notes on AND/OR Graph with an example.	4M	L1	CO1	I		
7	Explain Union and Find Algorithms with example.	8M	L1	CO1	1		
8	Write an Algorithm for sum of n numbers and calculate the space complexity and Time complexity.	8M	L3	CO1	1		
9	Describe the Asymptotic Notations with an example.	8M	L2	CO1	1		
10	Explain Binary search algorithm with suitable examples.	4M	L1	CO2	II		
11	Describe an Algorithm for solving Job sequencing with deadlines with the below	4M	L2	CO2	II		

		1			
	example: N=4, profits (p1,p2,p3,p4)				
	=(100,10,15,27) and deadlines $(d1,d2,d3,d4) =$				
	(2,1,2,1).				
12	Explain about merge sort with an example and	4M	L1	CO2	11
	find out the time complexity of it.				
13	Write the pseudo code for dijkstra's algorithm	4M	L3	CO2	11
	for single source shortest path problem with an				
	example.				
14	Discuss about fractional knapsack problem.	4M	L3	CO2	11
	Consider the following instance of knapsack				
	problem n=3, m=20, profits				
	(p1,p2,p3)=(25,24,15) and				
	weights $(w1, w2, w3) = (18, 15, 10)$. Obtain the				
	optimal solution using Greedy Method.				
15	Find the optimal solution by using prim's	4M	L3	CO2	11
13	minimum cost spanning tree of the following	4101	LJ	02	"
	graph				
	graph				
	Ω				
	5 2 10				
	(2)				
	(6) 16 22				
	Tal				
	20 3 14 7				
	20 7	1.00			
	3 8				
	CL X				
	3 (5)				
16	Write an algorithm for Stressan's matrix	8M	L3	CO2	П
	multiplication and the complexity of the				
	Algorithm.	BAF		10	
17	Sort the records with the following index	8M	L3	CO2	П
	values in the ascending order				
	using quick sort algorithm. 2, 3, 8, 5, 4, 7, 6, 9,				
	1. EXPLORE TO IN	VE.	N		
18	Describe the Kruskal's algorithm to find	8M	L3	CO2	11
	Minimum cost spanning tree with an example.				
19	Compute All pairs shortest path for the	4M	L3	CO3	
	following graph				
L		1	1		

20	Solve the following $0/1$ Knapsack problem using Dynamic Programming P=(11, 21, 31, 33, 24), W=(2, 6, 3, 5, 4), C=8, n=5.	4M	L3	CO3	111
21	Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4)=(do, if, read, while) $P(1:4)=(3,3,1,1)$ and $Q(0:4)=(2,3,1,1,1)$	4M	L3	CO3	111
22	MID-II Questions Describe the travelling sales person problem Find the Minimum cost tour for the following	4M	L3	CO3	111
	graph using Dynamic programming. Cost of the edges given in the matrix.				
	$36 \begin{bmatrix} 6 & 213 \\ 8 & 280 \end{bmatrix} = 42 \begin{bmatrix} 1 \\ 9 \\ 0 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = $				
23	Discuss About Chained matrix multiplication with an example.	4M	L3	CO3	
24	Compare Greedy with Dynamic programming method.	4M	L2	CO3	
25	Apply the backtracking algorithm to solve the following instance of the sum of subsets problem $S=\{5,10,12,13,15,18\}$ and $d=30$.	4M	L3	CO4	IV
26	Write an algorithm for Hamiltonian cycle with an example.	4M	L3	CO4	IV
27	Compare FIFO and LC Branch and Bound algorithms.	4M	L2	CO4	IV
28	Explain 4– Queens problem algorithm with an example.	4M	L3	CO4	IV
29	Difference between Backtracking and Branch and Bound Techniques.	4M	L2	CO4	IV
30	Evaluate the 0/1 Knapsack LC Branch and Bound Solution algorithm.	4M	L3	CO4	IV
31	Explain $N - Queens$ problem algorithm with an example.	8M	L3	CO4	IV
32	Draw the portion of state space tree generated by LCBB for the 0/1 Knapsack	8M	L3	CO4	IV

	instance: n=5 (p1,p2,,p5)=(10,15,6,8,4), (w1,w2,,w5)=(4,6,3,4,2) and m=12 and also				
	find an optimal solution of the same.				
33	Solve the following Travelling sales person problem using LC Branch & Bound Solution	8M	L3	CO4	IV
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
34	Explain non-deterministic algorithm.	4M	L1	CO5	V
35	Define P, NP, NP-Complete, and NP-Hard	4M	L1	CO5	V
36	Distinguish between deterministic and non- deterministic algorithm.	4M	L2	CO5	V
37	What is the satisfiability problem?	4M	L1	CO5	V
38	Differentiate between NP-complete and NP- Hard	4M	L2	CO5	V
39	Differentiate between decision problems and Optimization Problems	4M	L2	CO5	V
40	State the cook's theorem. What is the significance of this theorem?	8M	L3	CO5	V
41	Explain about functions of non-deterministic algorithms	8M	L1	CO5	V
42	Write short notes on basic concepts of NP- hard and NP-Complete	8M	L1	CO5	V
	TECHNICAL CA	MF	γU	IS	

EXPLORE TO INVENT

