CMR Technical Campus

B. Tech Mid Question Bank (R22 Regulation)

Academic Year: 2023-24

Semester: III semester

Subject Name: Discrete Mathematics

Faculty Name: G. Aravind, V Prema Tulasi

PART-A

MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No	
1	Write the following statements in symbolic form	2	1	1	1	
	a. Mark is poor but happy					
	b. Mark is rich or un <mark>happy</mark>					
	c. Mark is neither ric <mark>h nor happy</mark>					
	d. Mark is poor or he is both rich& unhappy					
2	Show that (¬P->Q) ->(Q->P) is a tautology.	2	3	1	1	
3	a. Define Conjunction, Disjunction with Example.	2	1	1	1	
	b. Define Implication, Bi-conditional with Example.					
4	a. Define Contradiction, Contingency with Example.	2	1	2	1	
	b. Define Preposition with an example.					
5	Define Converse, Inverse & Contrapositive with	2	1	2	1	
	Example.					
6	Examine Whether the following argument is valid.	2	4	1	1	
	a. If I drive to work, then I will arrive tired.					
	I am not tired (when I arrive at work)/ Therefore I					
	do not drive to work.					
	b. Write the following Propositions in symbolic form			-		
	& find its negation					
	" All integers are rational numbers & some rational	A. B.	a m.	1.1.0		
	numbers are not integers".					
7	a. Define Relation. List some of the properties of	2	1	1	2	
	binary relations.					
	b. Define Set. List out the set operations with	ΝV	EA			
	examples.					
8	Define Cartesian Product.	2	1	1	2	
	If A={1,2,3,4} and B={4,5} find i) AXB ii) BXA					
9	Let $X = \{1, 2, 3\}$ and $R = \{(x, y)/x > y\}$. Draw the graph of	2	1	1	2	
	R& also give its matrix?					
10	Let $X = \{1,2,3\}$ and f,g,h &s be the functions from X	2	1	1	2	
	to X given by f={ (1,2), (2,3), (3,1)} g = { (1,2) (2,1)					
	,(3,3) and h= { (1,1),(2,2),(3,1)} find fog, fohog?					
11	a. Define function & set with an example? List out	2	1	1	2	
	Set operations.					
	b. Find the inverse of the following function					
	$f(x) = x^2 + 1$					
12	Define Reflexive , Irreflexive, Symmetric,	2	1	1	2	

	Asymmetric ,Antisymmetric & Transitive with examples.				
13	Show that the set N of natural numbers is a	2	2	2	3
	semigroup under the operation $x^*y=max{x}$.				-
	v}. Is it a monoid.				
14	Show that the set $\{f0, f1, f2, f3\}$ of functions	2	1	1	3
	under the operation of composition is an	-	-	-	
	abelian group of order 4.				
15	Find all the subgroup of	2	1	2	3
	a. (Z12.+12)				-
	b. (Z5,+5)				
	MID-II Questions	1	1	1	1
16	a. Define Lattice and write the properties of Lattice,	2	2	1	3
	b. What is monoid.				
17	a. Give an example of group which is abelian but	2	1	1	3
	not cyclic.				
	b. Prove that the in <mark>tersection of two sub mon</mark> oids				
	of a monoid is a mo <mark>noid.</mark>				
18	What is an Alg <mark>ebraic structure? Ex</mark> plain	2	1	2	3
	semi group and monoid with examples.				
19	A group of 8 scientists is composed of 5-	2	2	1	4
	psychologists and 3-sociologists, in how many				
	ways can a committee of 5 be formed that has 3-				
	psychologists and 2-sociologists.				
20	A book binder is to bind 10 different books in red.	2	1	1	4
	blue and brown cloth. In how many ways can he do		-		
	this if each color of cloth is to be used for at least one				
	book?				
21	How many words of three distinct letters can be	2	1	1	4
	formed from CAKE?		100		
22	Give any three applications of Pigeonhole	2	2	1	4
	principle.				
23	From 6 boys and 4 girls, 5 are to be selected for	2	1	1	4
	admission for a particular course. In How many		8 m.	1.11	
	ways can this be done if there must be exactly 2	AN	пP	U2	
	girls?			-	
24	Find how many different words that can be formed	2	1	1	4
	with the letters in the word "MATHEMATICS".	N M	FB	1.	
25	a. Define Graph and Trees with examples.	2	1	1	5
	b. Define planar graph.				
26	a. Explain about graph colouring.	2	2	2	5
	b. What is a subgraph? Explain in detail?				
27	a. Explain multi graph with example.	2	2	1	5
	b. Define minimum spanning tree.				
28	a. Define Euler's Formula with examples.	2	1	2	5
	b. What is Euler circuit? Give some examples?				
29	Define the term Isomorphism and conditions for the	2	1	1	5
	graph to be Isomorphic.				
30	Define Chromatic number and give some examples.	2	1	1	5

PART-B

MID-I Questions							
Q.No	Questions	Marks	BL	СО	Unit No		
1	Construct truth table for	4	3	2	1		
	a. [(pvq)^ (¬r)] <-> (q->r)						
	b. Obtain the Principal Disjunctive normal of P<->q						
2	Construct PDNF and PCNF for	4	3	2	1		
	(~PV~Q)- → (P<->~Q)						
3	Show that SVR is tautologically implied by (PVQ) ^ (P->R)^(Q->S)	4	3	1	1		
4	Show that R->S can be derived from the set of premises P- $>(Q->S)$, \neg RVP and Q	4	3	1	1		
5	Construct PDNF of the formula (P^Q)V(~P^R).	4	3	1	1		
6	Construct PCNF of the formula $(\neg P ->R) \land (Q <->P)$	4	3	2	1		
7	a. Show that $\neg(P < ->Q)$ and $P < ->\negQ$ are logically equivalent.	8	3	2	1		
	b. Show that $(P->Q)<->(\neg Q->\neg P)$ is a tautology without using						
	truth table.						
8	Show that RVS follows logically from the premises	8	3	2	1		
	CVD, (CVD)->¬H, ¬H->(A^¬B) & (A^¬B)-> RVS						
9	Show that the following is logically equivalent	8	3	2	1		
	a. [¬P^(¬q ^r)] V(q^r) V (p^r)⇔r						
	b. Show that the following set of premises are inconsistent						
	using indirect method of proof:						
	P->Q, Q->R, ¬(P^R), PVR=> R.						
10	Define Partial Ordering relation along with example.	4	1	2	2		
11	Draw the Hasse diagram for the divisibility on the set	4	3	2	2		
	A={1,2,3,4,6,9,12,18,36}						
12	a. Let A= {0,2,4,6,8,10} B= {0,1,2,3,4,5,6} and	4	2	1	2		
	C= {4,5,6,7,8,9,10} find	- T					
	i). A^B^C ii) AUBUC						
	b. Let f & g be the function from the set of integers to	10 PT-1	1.11	~			
	defined by the $f(x) = 2x+3$, $g(x) = 3x+2$ what is the composition	иР					
	of t & g? What is the composition of						
12	g & f	4	2	2	2		
13	Let I: $R \rightarrow R$ be given by $I(X) = X^2 - 2$ lind I^2	4	2	2	2		
14	Let 1. R-2 R and g. R-2 R, where R is the set of real numbers	4	1	3	2		
	r_{x} $r_{y} = X + 4$ state whether these functions are injective						
	g(x) - x+4 state whether these functions are injective , surjective & bijective?						
15	a Describe the sets A & B given that $A_B = \{1, 2, 4\}$ B-A = $\{7, 8\}$	1	3	2	2		
15.	$a = b = \{1, 2, 4, 5, 7, 8, 9\}$	-	5	5	2		
	h Construct the Hasse diagram for the divisibility relation on						
	following sets						
	i) A={3.6.12.36.72} ii) A={1.2.3.5.6.10.15.30}						
16	a. Given a set $S = \{1, 2, 3, 4, 5\}$ find the equivalence relation on	8	3	3	2		
	S which generates the partition {{1.2}. {3}. {4.5}} draw the				-		
	graph of the relation.						
	b. Draw the Hasse diagrams of the following sets under						
	partial ordering relation "divides "						

	a. {2,6,24}				
	b. {1,2,3,6,12}				
	c. {3,9,27,54}				
17	Show that the relation R={(a,b)}/a-b is divisible by n} is an	8	3	2	2
	equivalence relation on the set of integers where n be a				
	positive integer>1.				
18	For each of these relations on the set {1,2,3,4}	8	1	3	2
	a. Define whether it is reflexive, symmetric, transitive				
	i) {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}				
	ii) {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)}				
	iii) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}				
	b. Let X= {1,2,3} and f, g, h be the functions from X to X given				
	by f= {(1,2), (2,3), (3,1)} g= {(1,2), (2,1), (3,3)}				
	h={(1,1),(2,2),(3,1)} find fog,fohog				
19	Let G be the set of real numbers not equal to -1 and * be	4	3	2	3
	defined by a*b=a+ <mark>b+ab</mark> Show th <mark>at <g,*>is</g,*></mark> an abelian				
	group				
20	Let (S1, *1), (S2, *2) and (s3, *) be semi groups and f: S1-	4	3	3	3
	>S2 and g: S2->S3be homeomorphisms. Show that the				
	mapping of gof:S1->S3 is homomorphism.				
21	Show that H={0,2,4} forms a subgroup of (Z6,+).	4	3	2	3
22	Let S is a semi group. If for all x $y \in s$, $x^2y = y x^2$. Show that S	4	3	3	3
	is an abelian group.				
	MID-II Questions		<u> </u>		
23	Determine all subgroups of each of the following groups:	4	3	3	3
	i) The additive group Z_3 ;				
	ii)The multiplicative group Z ₆ *.				
24	In a lattice (L, \leq, Λ, V) state and prove the laws idempotent,	4	1	3	3
	commutative, association and absorption				
25	Show that every subgroup of a cyclic group is cyclic.	8	3	2	3
26	Generate all homomorphism's.	8	6	3	3
	i)f: $Z_2 \rightarrow Z_4$	-	-	-	
	ii) $f:Z_2 \rightarrow Z_5$	10 P. 10	1.11		
27	3 Americans, 3 Mexicans, 3 Canadians are to be seated	4	3	3	4
	in a row. How many ways can they be				
	seated so that, no 3 countrymen sit together?				
28	How many ways can we distribute 14 indistinguishable	4	3	3	4
	balls in 4 numbered boxes so that each box is non empty.				
29	In how many ways can the letters {4.a, 3.b, 2.c} be	4	2	2	4
	arranged so that all the letters of the				
	same kind are not in a single block?				
30	A student is to answer 12 of 15 questions in an	4	2	3	4
	examination. How many choices does the student have:				
	i)if he must answer the first two questions				
	ii)if he must answer the first and second but not both				
	iii)if he must answer exactly 3 of the first 5 questions				
	iv)if he must answer at least 3 0f the first 5 question				
31	In a group of 30 people, at least how many are born in the	4	2	2	4
	same month?				
	In how many wave can 23 different books be given to 5	Δ	2	2	Λ

	students so that 2 of the students will have 4 books each				
33	and the other 5 will have 5 books each.	Q	2	3	1
	different restaurants be distributed among 10 students:	0	2	5	-
	i) If none is to receive more than one coupon?				
	ii) If there is no restriction on the number of coupons that				
	each student can receive?				
34	A student council consists of 15 students.	8	3	2	4
	i) Suppose two members refuse to work together on				
	projects. How many groups of seven can be chosen to				
	work on a project?				
	11) Suppose two team members insist on eithe				
	r working together or not at all on projects. How many				
25	There are 40 computer and groups are for a ich. 25 linguage	0	2	2	4
35	Inere are 40 computer programmers for a job. 25 know	ð	3	3	4
	principle of inclusion exclusion find how many know both				
	languages				
36	Explain spanning tree? Implement the BFS	4	5	3	5
30	algorithm for the following example			5	5
	a generation of the second sec				
	Ń	1			
	b h				
		-			
		-			
	e l				
	a f				
37	Generate the Chromatic number of the following	4	6	2	5
	two graphs?		U.		
	-				
		1 C N	1.00		
	F G 5 6 7				
38	Construct spanning tree for the following graph	4	3	3	5
	using DFS algorithm.				

