
Department of Information Technology

B. Tech. Mid Question Bank (R22 Regulation)

Academic Year: 2024-2025 Semester: III

Subject Name: Programming With Python

Faculty Name: Y. Satyam

PART-A

Q.No Questions Marks BL CO Unit
No

1 What is the purpose of the `input()` function in Python? 2 L1 CO1 I
2 Explain the difference between `=` and `==` in Python. 2 L1 CO1 I
3 What is the significance of indentation in Python programming? 2 L2 CO1 I
4 Write a simple Python program to print "Hello, World!" to the console. 2 L1 CO1 I
5 What are the two types of conditional statements available in Python? 2 L2 CO1 I
6 Describe the function of the `break` statement in a Python loop. 2 L2 CO1 I
7 What is the primary difference between lists and arrays in Python? 2 L1 CO2 II
8 How do you create a NumPy array in Python? Provide a simple example. 2 L1 CO2 II
9 What is the purpose of the reshape() method in NumPy? 2 L2 CO2 II

10 Explain how to perform element-wise addition of two NumPy arrays. 2 L1 CO2 II
11 Describe the use of the flatten() method in NumPy arrays. 2 L1 CO2 II
12 How do you convert a string to uppercase in Python? Provide an

example.
2 L2 CO2 II

13 What is the purpose of the return statement in a Python function? 2 L2 CO3 III
14 How do you define a recursive function in Python? Provide a brief

example.
2 L2 CO3 III

15 Explain how to create a list using the range() function in Python. 2 L2 CO3 III
16 What is the difference between a tuple and a list in Python? 2 L2 CO3 III
17 How do you sort the elements of a dictionary by its values using a

lambda function in Python?
2 L2 CO3 III

18 Write a Python code snippet to convert a list of tuples into a dictionary. 2 L2 CO3 III
19 What is the purpose of the open() function in Python? 2 L1 CO4 IV
20 List two built-in methods for file objects in Python. 2 L2 CO4 IV
21 How do you raise an exception in Python? 2 L1 CO4 IV
22 What is the purpose of the assert statement in Python? 2 L1 CO4 IV
23 How do you import a module in Python? 2 L2 CO4 IV
24 What is a namespace in Python? 2 L1 CO4 IV
25 What is a class in Python? 2 L1 CO5 V
26 Define inheritance in the context of Object-Oriented Programming

(OOP).
2 L1 CO5 V

27 What is the purpose of regular expressions in Python? 2 L2 CO5 V

28 Name two special characters commonly used in Python regular
expressions.

2 L2 CO5 V

29 What is a thread in the context of Python programming? 2 L2 CO5 V
30 Briefly explain the Global Interpreter Lock (GIL) in Python. 2 L2 CO5 V

PART-B

Q.No Questions Marks BL CO Unit
No

1 Discuss the history and evolution of Python. How has it changed over the
years and what are its major versions?

4 L1 CO1 I

2 Explain the different data types available in Python. Provide examples of
how to declare variables of these data types.

4 L1 CO1 I

3 Write a Python program that prompts the user to enter their age and
then prints a message based on whether the user is eligible to vote (18
years or older). Include the use of conditional statements in your code.

4 L2 CO1 I

4 Describe the purpose and use of the `continue` statement in Python.
Illustrate its use with a sample Python program that skips even numbers
in a loop.

4 L1 CO1 I

5 Explain the role of the `assert` statement in Python. Write a short code
snippet that demonstrates its use in verifying that a condition holds true.

4 L2 CO1 I

6 Differentiate between the `while` and `for` loops in Python. Provide
examples of each loop and explain when you might choose one over the
other.

4 L2 CO1 I

7 Compare and contrast the different types of operators available in
Python (arithmetic, comparison, logical, and assignment operators).
Provide examples of each type and explain their use in Python
programming.

8 L3 CO1 I

8 Write a Python program to demonstrate the use of `if`, `elif`, and `else`
statements. The program should categorize a given integer as "Negative",
"Zero", or "Positive" and also check if the number is even or odd.

8 L3 CO1 I

9 Explain the concept of control flow in Python, focusing on the `break`,
`continue`, and `pass` statements. Provide a Python program that uses
each of these statements within loops to demonstrate their effects.

8 L3 CO1 I

10 Explain how to create and initialize a NumPy array. Provide an example of
creating a 2D array and demonstrate how to access its elements.

4 L1 CO2 II

11 Describe the process of matrix multiplication in NumPy. Write a Python
code snippet to perform matrix multiplication on two 2x2 matrices.

4 L1 CO2 II

12 What are the key attributes of a NumPy array? Explain with examples
how to use shape, size, and dtype attributes.

4 L2 CO2 II

13 Illustrate the difference between string slicing and string searching in
Python with examples.

4 L2 CO2 II

14 How can you sort a list of strings in Python? Write a Python code snippet
to sort a list of strings alphabetically.

4 L2 CO2 II

15 Demonstrate how to use the numpy.reshape() method to change the
shape of an array. Provide an example with a 1D array reshaped into a

4 L2 CO2 II

2x3 2D array.
16 Discuss the different types of arrays available in NumPy and their

applications. Compare the numpy.array() function with numpy.zeros(),
numpy.ones(), and numpy.arange() in terms of their creation and
initialization of arrays. Provide examples of each.

8 L3 CO2 II

17 Explain matrix operations in NumPy, including matrix addition and
multiplication. Write Python code to perform these operations on two
2x2 matrices and explain the results.

8 L3 CO2 II

18 Illustrate how to perform string manipulation in Python. Discuss various
string operations such as slicing, searching, and sorting. Provide Python
code examples to demonstrate each operation.

8 L3 CO2 II

19 Define a Python function that takes two parameters and returns their
sum. Write a function call to demonstrate how it works and explain the
concept of parameters in function definitions.

4 L2 CO3 III

20 Write a recursive function to calculate the factorial of a given number.
Explain how recursion works with this function and demonstrate its use
with an example.

4 L2 CO3 III

21 Discuss how to perform operations on lists in Python. Provide examples
for common operations such as appending, extending, and removing
elements.

4 L2 CO3 III

22 Explain how to create and access elements in a tuple. Illustrate with an
example and discuss how tuples differ from lists in terms of mutability.

4 L2 CO3 III

23 Write a Python function that takes a dictionary as an argument and
returns a sorted list of its keys based on their corresponding values. Use a
lambda function to perform the sorting.

4 L2 CO3 III

24 Convert a list of strings into a dictionary where each string is a key and its
length is the value. Provide a Python code example for this conversion.

4 L2 CO3 III

25 Explain the difference between read() and readlines() methods when
working with file objects in Python.

4 L2 CO4 IV

26 Describe the process and importance of using context management
(with statement) when handling files in Python.

4 L2 CO4 IV

27 How can you create a custom exception in Python? Provide a brief
example.

4 L2 CO4 IV

28 Discuss the role of the try, except, else, and finally blocks in exception
handling.

4 L2 CO4 IV

29 Explain the difference between import module and from module import
attribute in Python.

4 L2 CO4 IV

30 What are Python packages, and how do they differ from modules?
Include an example of how to create and import a package.

4 L2 CO4 IV

31 Discuss the file system operations in Python, including how to navigate
directories, create, rename, and delete files and directories. Provide
examples demonstrating these operations.

8 L3 CO4 IV

32 Provide an in-depth explanation of the exception hierarchy in Python.
Discuss the various types of built-in exceptions and how they are
structured. Include examples of how to handle multiple exceptions and
how to use the sys module to obtain exception details.

8 L3 CO4 IV

33 Explain the concept of modules and packages in Python. Describe how to 8 L3 CO4 IV

create a module and a package, and demonstrate how to import and use
them in a Python program. Discuss the advantages of using modules and
packages for code organization and reusability.

34 Explain the concept of polymorphism in Python with an example. 4 L2 CO5 V
35 Describe the difference between abstract classes and interfaces in

Python. Provide an example of an abstract class.
4 L2 CO5 V

36 How do you use the ‘re’ module in Python to find all matches of a
pattern in a string? Provide a brief example.

4 L2 CO5 V

37 Explain the use of the ‘^’ and ‘$’ symbols in Python regular expressions
with examples.

4 L2 CO5 V

38 Compare and contrast threads and processes in Python. Provide
scenarios where each would be appropriate.

4 L2 CO5 V

39 Explain how the ‘Threading’ module is used to create and manage
threads in Python. Provide a simple example demonstrating the creation
of a thread.

4 L2 CO5 V

40 Discuss the principles of inheritance and polymorphism in Python.
Provide examples to illustrate how inheritance allows for code reuse and
how polymorphism enables methods to be used interchangeably across
different classes.

8 L3 CO5 V

41 Explain how regular expressions are utilized for pattern matching in
Python. Discuss the significance of special symbols and characters in
regular expressions, providing examples for each of the following: ‘\d’,
‘\w’, ‘\s’, ‘^’, and ‘$’. Demonstrate how to use the ‘re’ module to compile
a regular expression and perform a search operation.

8 L3 CO5 V

42 Describe the challenges and considerations of multithreading in Python,
focusing on the Global Interpreter Lock (GIL). Explain how the Threading
module can be used to create and manage threads, including a
discussion on thread synchronization techniques such as locks,
semaphores, and condition variables. Provide code examples to illustrate
these concepts.

8 L3 CO5 V

