DEPT. OF ELECTRONICS & COMMUNICATION ENGINEERING B. Tech. I-Mid Question Bank (R22 Regulation)

Academic Year: 2024-2025 Subject Name: CONTROL SYSTEMS [22EC502PC] Faculty Name: Dr.Bandi Doss, A.Vamshidhar Reddy

Semester: V

PART-A

	MID-I Questions							
Q.NO	QUESTIONS	MARKS	BL	СО	UNIT NO.			
1	Define control system. List out the types.	2M	L1	CO1	1			
2	Define Block, Summing Point, and Branch point.	2M	L1	CO1	I			
3	List any two rules for block diagram reduction techniques?	2M	L1	CO1	1			
4	Explain any two benfits of Feedback.	2M	L2	CO1	1			
5	Formulate the expression for closed loop transfer function.	2M	L6	CO1	1			
6	Define characteristic equation of a transfer function and give an example.	2M	L1	CO1	1			
7	Define time response and steady state response?	2M	LI	CO2	II			
8	Define damping ratio and classify the system depending on damping ratio.	2M	LI	CO2	П			
9	Sketch the response of a second order under damped system	2M	L3	CO2	II			
10	Define BIBO Stability.	2M	L1	CO2	11			
11	List the time domain specifications.	2M	L1	CO2	П			
12	Define steady state error and explain static error constants.	2M	IPUS	CO2	II			
13	Define frequency response. List out the different frequency domain specifications.		ENT	CO3	111			
14	Describe the Bode plot with advantages.	2M	L2	CO3	III			
15	Describe the Polar plot with advantages.	2M	L2	CO3	Ш			
		Questions						
16	Define nyquist stability criterion and nyquist contour.	2M	L1	CO3	III			
17	Sketch the polar plot for type 2 and 5 th order sytem.	2M	L3	CO3				
18	Explain relative stability using nyquist criterion.	2M	L2	CO3				
19	Define controller. Why it is needed for control system?	2M	L1	CO4	IV			

20	Explain robustness of control system.	2M	L2	CO4	IV	
21	List the types of compensation. What is a compensator?	2M	L1	CO4	IV	
22	Distinguish lead compensator, lag compensator.	2M	L4	CO4	IV	
23	Discuss the transfer function of lag and lead compensators.	2M	L2	CO4	IV	
24	Sketch basic lag-lead compensator using electrical network.	2M	L3	CO4	IV	
25	Define state, state variable and state vector.	2M	L1	CO5	V	
26	Discuss the advantages of state space analysis? Write the general form of state variable matrix.	2M	L2	CO5	V	
27	Solve the state transition matrix of the system $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	2M	L3	CO5	V	
28	List out the properties of state transition matrix.	2M	L1	CO5	V	
29	Develop the equation for state transition matrix.	2M	L6	CO5	V	
30	Define diagonalization and modal matrix. How the modal matrix is determined?	2M	L1	CO5	V	
PART-B						

	MID-I Questions				
Q.NO	QUESTIONS ECHNICAL CAMPI	MARKS	BL	со	UNIT NO.
1	Develop the transfer function of the block diagram shown in figure G_2 G_3 $Y(s)$ K_c G_1 G_3 $Y(s)$	4	L6	CO1	1
2	Distinguish between Open loop and Closed loop Systems.	4	L4	CO1	1
3	Develop the transfer function of given mechanical translation system.	4	L2	CO1	I

k_1 k_2 k_1 k_2 k_1 k_2 k_2 k_1 k_2 k_2 k_1 k_2 k_2 k_1 k_2 k_1 k_1 k_2 k_1 k_2 k_1 k_1 k_1 k_2 k_1 k_2 k_1 k_1 k_2 k_1 k_1 k_2 k_1 k_1 k_2 k_1 k_2 k_1 k_2 k_1 k_1 k_2 k_1 k_1 k_2 k_2 k_1 k_2 k_2 k_1 k_2 k_1 k_2 k_2						
4 Explain the Traffic light control system and Room temperature control system with neat sketches as control system examples. 4 L2 COI 1 5 Explain the mechanical translational and rotational system examples. 4 L2 COI 1 6 Develop the transfer function of following electrical circuit 4 L6 COI 1 7 Discuss all Block Diagram reduction rules. 8 L2 COI 1 8 Develop transfer function of below block diagram. 8 L6 COI 1 9 Develop the transfer function of given mechanical rotational system 8 L6 COI 1 9 Develop the transfer function of a unit feedback control system 4 L6 COI 1 10 The open loop transfer function of a unit feedback control system is given by G(S) $\frac{2}{s(s+1)}$. Develop the expression for unit step response of the system. 4 L6 II						
control system with neat sketches as control system examples.4L2C015Explain the mechanical translational and rotational system elements.4L2C0116Develop the transfer function of following electrical circuit4L6C011F(1)F(1)F(1)7Discuss all Block Diagram reduction rules.8L2C0118Develop transfer function of below block diagram.8L6C011F(1)F(1)9Develop the transfer function of given mechanical rotational system8L6C0119Develop the transfer function of a unit feedback control system4L6C011The open loop transfer function of a unit feedback control system4L6U110The open loop transfer function of a unit feedback control system4L6U1The open loop transfer function of a unit feedback control system10The open loop transfer function of a unit feedback control system4L6C0211Solve the damping ratio and natural frequency of oscillation for the4L3C02II				1.0	001	
5 Explain the mechanical translational and rotational system 4 L2 CO1 1 6 Develop the transfer function of following electrical circuit 4 L6 CO1 1 7 Discuss all Block Diagram reduction rules. 8 L2 CO1 1 8 Develop the transfer function of below block diagram. 8 L6 CO1 1 9 Develop the transfer function of given mechanical rotational system 8 L6 CO1 1 9 Develop the transfer function of a unit feedback control system 8 L6 CO1 1 10 The open loop transfer function of a unit feedback control system 4 L6 CO2 1 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 1	4		4	L2		1
elements. 6 Develop the transfer function of following electrical circuit 4 L6 C01 1 E(0) E(5		4	L2	CO1	1
7 Discuss all Block Diagram reduction rules. 8 L2 CO1 1 8 Develop transfer function of below block diagram. 8 L6 CO1 1 9 Develop the transfer function of given mechanical rotational system 8 L6 CO1 1 9 Develop the transfer function of a unit feedback control system 8 L6 CO1 1 10 The open loop transfer function of a unit feedback control system is given by $G(S) = \frac{2}{s(S+3)}$. Develop the expression for unit step response of the system. 4 L6 II 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 II				22	001	
7 Discuss all Block Diagram reduction rules. 8 L2 COI 1 8 Develop transfer function of below block diagram. 8 L6 COI 1 9 Develop the transfer function of given mechanical rotational system 8 L6 COI 1 9 Develop the transfer function of a unit feedback control system 8 L6 COI 1 10 The open loop transfer function of a unit feedback control system is given by $G(S) = \frac{Z}{s(s+3)}$. Develop the expression for unit step response of the system. 4 L6 II 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 II	6		4	L6	CO1	1
8 Develop transfer function of below block diagram. 8 L6 C01 1 9 Develop the transfer function of given mechanical rotational system 8 L6 C01 1 9 Develop the transfer function of given mechanical rotational system 8 L6 C01 1 10 The open loop transfer function of a unit feedback control system is given by $G(S) = \frac{2}{s(S+3)}$. Develop the expression for unit step response of the system. 4 L6 II 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 II		$ \begin{bmatrix} c \\ E_{i}(t) \end{bmatrix} = \begin{bmatrix} c \\ C $				
8 Develop transfer function of below block diagram. 8 L6 C01 1 9 Develop the transfer function of given mechanical rotational system 8 L6 C01 1 9 Develop the transfer function of given mechanical rotational system 8 L6 C01 1 10 The open loop transfer function of a unit feedback control system is given by $G(S) = \frac{2}{s(S+3)}$. Develop the expression for unit step response of the system. 4 L6 II 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 II	7	Discuss all Block Diagram reduction rules.	8	L2	CO1	1
9 Develop the transfer function of given mechanical rotational system 10 The open loop transfer function of a unit feedback control system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. 11 Solve the damping ratio and natural frequency of oscillation for the 4 L3 CO2 II						
system D D E T D I I I I I I I I I I			JS		224	
Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit step response of the system. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}{s(s+3)}$. Image: second system is given by $G(S) = \frac{2}$	9	Develop the transfer function of given mechanical rotational	8	L6	CO1	I
is given by $G(S) = \frac{2}{s(s+3)}$. Develop the expression for unit stepCO2response of the system.1111Solve the damping ratio and natural frequency of oscillation for the4L3CO2			Т			
response of the system.Image: Constraint of the system.11Solve the damping ratio and natural frequency of oscillation for the4L3CO2II	10	The open loop transfer function of a unit feedback control system	4	L6		11
11Solve the damping ratio and natural frequency of oscillation for the4L3CO2II					CO2	
	11		4	L3	CO2	11

	by $400/(s^2+2s+400)$.				
12	Develop the time response of first order system for unit ramp signal	4	L6	CO2	11
13	$F(S) = S^6 + S^5 + 2S^4 + 3S^3 + 7S^2 + 4S^1 + 4 = 0$. Judge the stability based on the number of roots falling in the RHS plane and LHS plane using RH criteria	4	L5	CO2	11
14	Construct the expression for maximum peak over shoot and rise time.	4	L6	CO2	11
15	Develop the time response of second order system for unit step signal under damped condition.	4	L6	CO2	II
16	Sketch the root locus for the unity feedback system whose open loop transfer function is $G(S)=$ $\frac{k(s+9)}{s(s^2+4s+11)}$	8	L3	CO2	11
17	a) For servomechanisms with open loop transfer function given below explain what type of input signal give rise to a constant steady state error and calculate their values.	8	L2	CO2	11
	(i) $\mathbf{G}(\mathbf{s}) = \frac{20(s+2)}{s(s+1)(s+3)}$; (ii) $\mathbf{G}(\mathbf{s}) = \frac{10}{(s+2)(s+3)}$; (iii) $\mathbf{G}(\mathbf{s}) = \frac{10}{s^2(s+1)(s+2)}$				
	^{b)} The open loop transfer function of a servo system with unity feedback system is $G(S) = \frac{10}{S(0.1S+1)}$. Evaluate the				
	static error constants of the system. Obtain the steady state error of the system when subjected to an input given by the polynomial $r(t) = a_0 + a_1 t + (a_2 / 2) t^2$.				
18	Sketch the root locus for $G(S) = \frac{K(S^2 - 4S + 20)}{(S+2)(S+4)}$ Find the gain, K at the point where the locus crosses the imaginary axis.	8	L3	CO2	11
19	Sketch the Bode plot and hence find Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin. $G(S) = \frac{0.75(1+0.2S)}{1+0.2S}$	4	L3	CO3	
20	S(1+0.5S) (1+0.1S)The open loop transfer function of a unity feedback system is $G(S) = \frac{1}{S(1+S)(1+2S)}$. Sketch the Polar plot and determine the Gainmargin and Phase margin.	4	L3	CO3	111
21	Construct Nyquist plot for a feedback control system whose open loop transfer function is given by $G(S)H(S) = \frac{5}{S(1-S)}$. comment on	4	L6	CO3	
	the stability of open loop and closed loop transfer function. MID-II Questions				
22	Construct the Bode plot for the system whose open loop transfer	4	L6	CO3	
	function is $G(S)H(S) = \frac{5(1+2S)}{(1+4S)(1+0.25S)}$. Determine the Gain Margin				
	and Phase Margin.				

23	Construct the polar plot for the function $G(S)H(S) = \frac{2(S+1)}{s^2}$. Find	4	L6	CO3	III
	Gain cross over frequency, Phase cross over frequency, Gain				
	margin and Phase margin				
24	Construct Nyquist plot for a feedback control system whose open	4	L6	CO3	Ш
	loop transfer function is given by $G(S)H(S) = (s+1)(s+2)/(s+3)$.				
	comment on the stability of open loop and closed loop transfer				
	function.		~ •	~ ~ .	
25	Explain the design procedure for lead compensator using bode plot and root locus	4	L2	CO4	IV
26	Explain the design procedure for lag compensator using bode plot and root locus	4	L2	CO4	IV
27	Define frequency domain specifications	4	L1	CO4	IV
	(i)Resonant Peak (ii) Resonant Frequency (iii) Bandwidth				
	(iv) Cut-off rate (iv) Gain Margin (v) Phase Margin				
28	Discuss different applications of Proportional, Integral and	4	L2	CO4	IV
	derivative controllers				
29	Obtain the transfer function of Lead Compensator, draw pole-zero	4	L4	CO4	IV
	plot		~ •		
30	Obtain the transfer function of Lag Compensator, draw pole-zero	4	L3	CO4	IV
	plot	0	τ.4	004	
31	Derive the expression for resonant frequency and resonant	8	L4	CO4	IV
32	frequency Design a lead compensator for the unity feedback system with	8	L6	CO4	IV
52	open loop	0	LO	04	IV
	K = K + K				
	transfer function $G(S) = \frac{K}{s(s+1)(s+5)}$ is to meet the				
	following specifications:				
	(i) Velocity error constant, $Kv \ge 50$.	Sec.			
	(ii) Phase Margin $\gamma \ge 20$.				
33	Design a lag compensator for the unity feedback system whose	8	L6	CO4	IV
	closed loop transfer function G(S) = $\frac{K}{s(s+1)(0.2s+1)}$ is to meet the	50			
	following specifications: PM ≥ 40 and K _V ≥ 8 .				
34	The state equation of a linear time invariant system is given as	4	L6	CO5	V
	$\dot{x} = \begin{bmatrix} 0 & 5 \\ -1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$				
	Develop the transfer function and draw the state diagram				
35		4	L5	CO5	V
	Reframe the matrix A to the diagonal matrix $A = \begin{bmatrix} -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix}$				
36	Test the controllability & observability of the system whose state	4	L6	CO5	V
	space representation is given as $\begin{bmatrix} x1\\ x2 \end{bmatrix} = \begin{bmatrix} -5 & -1\\ 3 & -1 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} + \begin{bmatrix} 2\\ 5 \end{bmatrix} u$				
	$y=\begin{bmatrix}1 & 2\end{bmatrix}\begin{bmatrix}x1\\x2\end{bmatrix}$				

37	Solve the state space representation for following differential	4	L3	CO5	V
	equation $d^2y/dt^2+5dy/dt+7y=11u$ where y is output and u is the	-			
	input				
38		4	L5	CO5	V
50	A system is characterized by transfer function $\frac{Y(S)}{U(S)} = \frac{2}{S^3 + 6S^2 + 11S + 6}$	I			, ,
	Find the state and output equation in matrix form				
39	A system is characterized by the following state space equations: •	4	L3	CO5	V
	$\frac{d}{dx}X_1 = -3x_1 + x_2$; $\frac{d}{dx}(X_2) = -2x_1 + u$; $Y = x_1$. Find the transfer				
10	function of the system and Stability of the system	8	L3	CO5	V
40	Determine the Solution for Homogeneous and Non homogeneous	0			v
	State equations	0	L		
41	Construct the canonical form of representation for the following	8	L6	CO5	V
	state model				
	$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 11 \\ 1 \\ 1 \\ 1 \end{vmatrix}$				
	$\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 11 \\ 1 \\ -14 \end{bmatrix} u$				
	$y=[-3 \ 5 \ -2] \begin{bmatrix} x1\\ x2\\ x2 \end{bmatrix}$ between early and late range gates				
42	Consider a control system with state model $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	8	L6	CO5	V
	$\begin{bmatrix} x_2 \end{bmatrix} \begin{bmatrix} -2 & -3 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix}$				
	$+\begin{bmatrix}0\\2\end{bmatrix}$ where u is unit step function and $x(0) = \begin{bmatrix}0\\1\end{bmatrix}$. Develop the				
	state transition matrix and there from find the response for $t>0$				
			•	•	·1

EXPLORE TO INVENT