Department of CSE

B. Tech Mid Question Bank (R22 Regulation)

Academic Year: 2024-2025 Semester: V

Subject Name: Distributed Databases (Professional Elective - II)

Faculty Name: M. SUNITHA

MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No	
1	Define the distributed databases.	2	L1	CO1	Ι	
2	Discuss the promises of DDBSs.	2	L2	CO1	Ι	
3	Discuss the replication in DDBSs.	2	L2	CO1	Ι	
4	Explain the reason for fragmentation.	2	L1	CO1	Ι	
5	List the design strategies in distributed data base	2	L1	CO1	Ι	
	design.					
6	Define the fragmentation in distributed databases.	2	L1	CO1	Ι	
7	Define query.	2	L1	CO2	II	
8	Discuss about the query processing.	2	L2	CO2	II	
9	Identify the query processing objectives.	2	L2	CO2	II	
10	Explain the query decomposition.	2	L1	CO2	II	
11	Define the optimistic timing.	2	L1	CO2	II	
12	Define global query optimization.	2	L1	CO2	II	
13	Define dead lock avoidance.	2	L1	CO3	III	
14	Define serializability.	2	L1	CO3	III	
15	Explain transaction management in DDBSs.	2	L2	CO3	III	
MID-II Questions						
16	Explain the properties of transactions.	2	L2	CO3	III	
17	Define isolation.	2	L1	CO3	III	
18	Explain flat transactions.	2	L2	CO3	III	
19	Identify the advantages of parallel distributed	2	L2	CO4	IV	
	database.					
20	List the types of fault tolerance.	2	L2	CO4	IV	
21	Define reliability with an example.	2	L1	CO4	IV	
22	Define network partitioning in distributed databases.	2	L1	CO4	IV	
23	Define site failures in distributed databases.	2	L1	CO4	IV	
24	Explain about database clusters.	2	L2	CO4	IV	
25	Define inheritance.	2	L1	CO5	V	
26	Explain about architectural issues of object database.	2	L2	CO5	V	
27	Difine object.	2	L2	CO5	V	
28	Explain the drawbacks of object database.	2	L2	CO5	V	
29	Define object query processing.	2	L1	CO5	V	
30	Define persistence of objects.	2	L1	CO5	V	

PART-B

MID-I Questions					
Q.No	Questions	Marks	BL	CO	Unit No
1	Explain the top down approach design strategy of distributed database design.	4	L1	CO1	Ι
2	Identify the need to have distributed databases, and distinguish the features of distributed databases with centralized databases.	4	L2	CO1	Ι
3	Draw and explain distributed database management system architecture.	4	L2	CO1	Ι
4	Explain the horizontal fragmentation in distributed databases.	4	L1	CO1	Ι
5	Explain in detail about the client-server architectural Models for distributed data bases.	4	L2	CO1	Ι
6	Explain in detail about the data processing in DDBSs.	4	L2	CO1	Ι
7	Explain the various problem areas and distributed database design issues.	8	L2	CO1	Ι
8	Explain in brief about vertical fragmentation, and peer to peer architectural models for distributed DBMS.	8	L2	CO1	Ι
9	Explain in detail about the bottom up approach in design strategies.	8	L2	CO1	Ι
10	Explain the SDD-1 distributed query optimization algorithms in brief.	4	L1	CO2	II
11	Explain the Eploitation of network topology.	4	L1	CO2	II
12	Discuss the semi joins in query optimization.	4	L2	CO2	Π
13	Explain about the query processing layers with an examples.	4	L1	CO2	II
14	Discuss about the normalization in query decomposition.	4	L2	CO2	II
15	Explain about the localization of distributed data?	4	L2	CO2	II
16	Discuss in detail the query decomposition successive steps.	8	L2	CO2	II
17	Illustrate allocation methods for distributed database design.	8	L5	CO2	II
18	Describe characterization of query processors.	8	L2	CO2	II
19	Differentiate between centralized 2PL protocol and Distributed 2PL protocol.	4	L4	CO3	III
20	List and explain types of transactions with suitable diagrams.	4	L1	CO3	III
21	Elaborate Distributed Deadlock detection for distributed database systems.	4	L3	CO3	III
UNIT-II Questions					
22	Explain optimistic concurrency control algorithms.	4	L2	CO3	III
23	Discuss in detail about the nested transaction.	4	L2	CO3	III
24	Discuss in detail about deadlock management.	4	L2	CO3	III
25	Explain general architecture of a shared memory	4	L2	CO4	IV

	architecture.				
26	Explain distributed reliability protocols	4	L2	CO4	IV
27	Discuss the failures in distributed DBMS.	4	L2	CO4	IV
28	Discuss about local & distributed reliability	4	L2	CO4	IV
	protocols				
29	Explain briefly about site failures and network	4	L2	CO4	IV
	partitioning.				
30	Explain briefly about the database clusters.	4	L2	CO4	IV
31	Explain in detail about the network partitioning.	8	L2	CO4	IV
32	Discuss the failures of distributed reliability	8	L2	CO4	IV
	protocols in distributed DBMS.				
33	Discuss about the parallel data base systems.	8	L2	CO4	IV
34	Describe in detail cache consistency and object	4	L2	CO5	V
	identifier management in object management.				
35	Discuss architectural issues in distributed object	4	L2	CO5	V
	DBMS.				
36	Compare OODBMS and ORDBMS.	4	L4	CO5	V
37	Discuss in detail about persistent programming	4	L2	CO5	
	languages.				
38	Discuss in detail about the vertical class partitioning.	4	L2	CO5	V
39	Explain about the object oriented data model.	4	L2	CO5	V
40	Explain the object server architecture.	8	L2	CO5	V
41	Explain in brief about distributed object storage.	8	L2	CO5	V
42	Discuss about the fundamental object models.	8	L2	CO5	V

GROUP OF INSTITUTIONS

EXPLORE TO INVENT