DEPT. OF ELECTRONICS & COMMUNICATION ENGINEERING B. Tech. I-Mid Question Bank (R22 Regulation)

Academic Year: 2024-2025 Semester: V Subject Name: Linear & Digital IC Applications [22EC503PC] Faculty Name: Dr. K. Bharath Kumar, Dr. K. Mohana Lakshmi,

PART-A

MID-I Questions						
Q. No.	Questions	Marks	BL	СО	Unit. No	
1	Define CMRR.	2M	L1	CO1	I	
2	How a voltage follower may be used as Buffer for impedance matching.	2M	L2	CO1	I	
3	Draw pin diagram and equivalent circuit of op-amp IC 741.	2M	L2	CO1	I	
4	Write the features and pin diagram of IC 723.	2M	L1	CO1	I	
5	Draw the comparator circuit using IC 741 Op-Amp.	2M	L2	CO1	I	
6	Define input offset voltage.	2M	L1	CO1	I	
7	Define Duty Cycle.	2M	L1	CO2		
8	Draw the circuit diagram of first order Butterworth filter HPF.	2M	L1	CO2	11	
9	Define All pass filter.	2M	L2	CO2	II	
10	How to generate a square wave using Op-Amp.	2M	L1	CO2	П	
11	List the applications of PLL.	2M	L2	CO2	II	
12	Calculate the value of Capacitor C, if $R=100 \text{ k}\Omega$ and the time delay	2M	L4	CON	11	
	T=100 ms, provided IC 555 time is in monostable mode.					
13	What is the primary function of a data converter in electronic	2M	L1	CO3		
14	systems? What is the main disadvantage of a maintain term DAC?	214	T 2			
14	what is the main disadvantage of a weighted resistor DAC?	2111		003		
15	How does the R-2R ladder DAC improve upon the weighted resistor DAC?	2M	L4	CO3		
	MID-II Questions	0.01		I	I	
16	Calculate the output voltage for a 3-bit inverted R-2R DAC with a reference voltage of 5V and a digital input of 101.	2M	L5	CO3		
17	Explain the basic working principle of a Digital-to-Analog Converter (DAC).	2M	L2	CO3		
18	What is the role of the successive approximation register (SAR) in a successive approximation ADC?	2M	L5	CO3		
19	Which of the parameters decide the fan-out and how?	2M	L2	CO4	IV	
20	Explain the use of Package.	2M	L1	CO4	IV	
21	What is combinational logic?	2M	L1	CO4	IV	
22	What is a multiplexer?	2M	L2	CO4	IV	
23	Write a short note on priority encoder.	2M	L1	CO4	IV	
24	Design CMOS transistor circuit for 2-input AND gate.	2M	L2	CO4	IV	

25	Write the applications of shift registers.	2M	L3	CO5	V
26	Differentiate Static and Dynamic RAMs.	2M	L2	CO5	V
27	Draw the block diagram of 3-bit ring counter	2M	L2	CO5	V
28	What is meant by state diagram?	2M	L1	CO5	V
29	Write the specifications of counter IC's	2M	L1	CO5	V
30	What is Race around condition? How is it avoided?	2M	L1	CO5	V

PART- B

MID-I Questions						
Q.N o.	Questions	Marks	BL	СО	Unit. No	
1	Discuss about DC characteristics given in below list.a. Input Bias Currentb. Input Offset Currentc. Input Offset Voltaged. Thermal Drift	4M	L4	CO1	I	
2	With necessary Circuit diagrams explain about the following modes of Op-Amp operations and derive their gain expressions. i. Inverting Mode ii. Non-Inverting Mode	4M	L5	CO1	I	
3	With necessary Circuit diagrams explain about the following modes of Op-Amp operations and derive their gain expressions.i. Differential Amplifier ii. Schmitt Trigger	4M	L5	CO1	1	
4	Draw the circuit diagram and explain the working principle of Instrumentation Amplifier.	4M	L4	CO1	I	
5	Design a basic voltage level detector using an op-amp as a comparator. Explain its working.	4M	L6	CO1	I	
6	With a neat Pin diagram, explain about 78xx series regulator	4M	L4	CO1	I	
7	Explain about Integrator and differentiator circuit with necessary derivations. List ideal and practical op-amp characteristics	8M	L4	CO1	I	
8	 i. Provide a brief not on the given AC characteristics of op-amp a. Frequency Response b. Slew Rate ii. Briefly Explain the different types of voltage regulators 	8M	L4	CO1	I	
9	i. Draw and explain the various functional blocks of an operational amplifier IC?ii. Explain about the virtual ground concept	8M	L2	CO1	I	
10	Explain Saw-tooth and Triangular wave generator with necessary output waveforms.	4M	L6	CO2	Ш	
11	Explain the operation of first order low pass butter worth filter? Derive the expression for filter gain & draw the frequency response curve?	4M	L2	CO2	II	
12	Explain the operation of first order high pass butter worth filter? Derive the expression for filter gain & draw the frequency response curve?	4M	L2	CO2	11	
13	Explain the Pin Diagram of IC555. Explain the operation of monostable multivibrator using IC 555 timer and derive the expression for pulse width. List the applications.	4M	L2	CO2	11	

14	From the given components values find the free running	4M		CO^{2}	
14	From the given components values and the nee running from $V = 10 \text{ eV}$ V = 12V P = 4.7KO and	-1VI	I G	002	
	frequency control voltage $v_c = 10.9v$, $v_{cc} = 12v$, $K_1 = 4.7K_{22}$ and		LO		
	$C_1 = 1.1 \text{Nf.}$				
15	Design an active high pass filter with cut-off frequency of 4KHz	4M	L6	CO2	
	Design an active high pass filter with eut-off frequency of 41(1)2.				II
16	Explain the operation of monostable and Astable multivibrators	8M		CO2	
	using IC 555 timer and derive the expression for pulse width. List		L2		11
	the applications.				
17	What is the principle of operation of PLL and explain each block	8M	15	CO2	
1/	in detail. Derive the expression for Contine Dance and Look in	0111		002	
	In detail. Derive the expression for Capture Range and Lock-in				
	Range.				
18	1. Briefly Characteristics of Band pass, Band reject and All Pass	8M		CO2	
	Filters				II
	ii. An Astable multivibrator has $RA = 6.8 \text{ k}\Omega$, $RB = 3.3 \text{ k}\Omega$ and		L4		
	$C = 0.1 \mu F$. Calculate (a) free running frequency and (b) duty				
	cvcle D.				
19	Explain the operation of Weighted Resistor DAC with the help of	4M			
17	eirquit Diogram	-11/1	L2	CO3	
20		43.6			
20	Explain the working principle of inverting and Non –Inverting R-	4M	L5	CO3	
	2R ladder DAC with neat circuit diagram.		20		
21	Explain about counter type ADC with neat block diagram.	4M	12	CO3	III
			L2		
	MID-II Questions				
22	Explain the operation of parallel comparator type ADC.	4M	T /	CO3	
			L4	000	
23	Draw the block diagram and explain the operation of dual slope A	4M	T A	CO3	
	to D converter. What are the advantages and disadvantages.		LT		
24	Draw and explain successive approximation type ADC with an	4M	T 1	CO 2	
	example.	-		003	
25	Explain the following terms with reference to CMOS logic	4M		CO4	IV
25	i Logic Levels	-11/1	13	004	
	iii Derren sung les miles in Derren stien de les	Sec. 1	L3		
21	III. Power supply rails IV. Propagation delay	43.6		<u> </u>	
26	List the Specifications and Applications of TTL-74XX series IC.	4M	L3	CO4	IV
27		1) (T 2	004	
27	Draw a logic symbol of 8X1 multiplexer using 74 X 151 IC	4M	L3	CO4	IV
20	Design a 4 to 16 dece denusing two 74×128 IC's	414		CO1	11/
28	Design a 4 to 16 decoder using two /4×138 IC s.	4111	L6	CO4	IV
20	Eventain magnitude commentary using 741 595 IC	414		CO4	11/
29	Explain magnitude comparator using /4LS85 IC.	41 VI	L3	004	IV
30	What do you mean by Carry propagation delay? Draw a logic	4M	Tí	CO4	IV
	symbol of 8 X 3 Priority Encoders using 74 X 148 IC		L6		
31	Design 5X22 bit decoder using 74 X 138 IC's & 74 X	8M		CO4	11/
51	1. Design $3A32$ bit decoder using 74×136 ic s & 74×120 IC?	0111		0.04	IV
			L6		
	11. Give the design considerations of parity encoder and				
	explain the operation with relevant circuit				
32	Draw and explain the block diagram of n-bit parallel binary	8M	L6	CO4	IV
	adder/Subtractor. Design 4-bit Parallel Binary Adder using IC				
	74LS182.				
33	Find the state diagram and state table of a binary coded decimal	8M	I 4	CO4	IV
55	to excess-3 decoder	01,1			
				1	

34	Design a 4-bit bidirectional shift register with parallel load.	4M	L6	CO5	V
35	Draw the circuit diagram of a 4-bit ripple carry adder using 4 full	4M	12	CO5	V
	adder circuit blocks.				
36	Design a conversion circuit to convert a D flip-flop to J-K flip-	4M	16	CO5	V
	flop.				
37	Design and implement FIFO shift register using IC's.	4M	L6	CO5	V
38	Explain Decade Counter Using IC 7490.	4M	L6	CO5	V
39	What is meant by a transparent latch?	4M	L1	CO5	V
40	i. Design a conversion circuit to convert a D flip-flop to J-K	8M		CO5	V
	flip-flop?		L6		
	ii. List the characteristics of CMOS40XX Series ICs				
41	Write short notes on Ring Counter and Johnson counter	8M	L2	CO5	V
42	i. Draw the internal structure of synchronous SRAM and	8M		CO5	V
	explain the read and write operation With the help of				
	timing diagram.		L4		
	ii. Explain the differences between Static RAM and Dynamic				
	RAM				

EXPLORE TO INVENT