# **Department of CSE**

## **B.Tech Mid Question Bank (R22 Regulation)**

Academic Year: 2024-25 Semester: IV

**Subject Name: OPERATING SYSTEMS (22CS403PC)** 

**Faculty Name:** Dr J. Narasimharao, Dr Raj Kumar Patra, Dr. B. Laxmaiah, A. Uday Kiran, V S Manoj Kumar Chenna. L Swathi, Ch Mallikarjuna Reddy.

### **PART-A**

| MID-I Questions |                                                                                             |       |    |     |         |  |  |
|-----------------|---------------------------------------------------------------------------------------------|-------|----|-----|---------|--|--|
| Q.No            | Questions                                                                                   | Marks | BL | CO  | Unit No |  |  |
| 1               | What Is An Operating System?                                                                | 2     | L1 | CO1 | I       |  |  |
| 2               | List The Types of Operating Systems Based on Their Structure.                               | 2     | L1 | CO1 | I       |  |  |
| 3               | Define A System Call in The Context of An Operating System                                  | 2     | L1 | CO1 | I       |  |  |
| 4               | Identify various types of system components?                                                | 2     | L3 | CO1 | I       |  |  |
| 5               | Differentiate between Program and Process.                                                  | 2     | L2 | CO1 | I       |  |  |
| 6               | Explain the Process state diagram.                                                          | 2     | L2 | CO1 | I       |  |  |
| 7               | Define Scheduling Criteria.                                                                 | 2     | L1 | CO2 | II      |  |  |
| 8               | List Two Types Of CPU Scheduling Algorithms.                                                | 2     | L1 | CO2 | II      |  |  |
| 9               | Differentiate Between Wait and Waitpid.                                                     | 2     | L2 | CO2 | II      |  |  |
| 10              | What Is a Resource Allocation Graph?                                                        | 2     | L1 | CO2 | II      |  |  |
| 11              | Plan the necessary Condition for a Deadlock                                                 | 2     | L3 | CO2 | II      |  |  |
| 12              | Explain Turnaround Time and waiting time?                                                   | 2     | L2 | CO2 | II      |  |  |
| 13              | What Are the Three Conditions That a Solution To The Critical Section Problem Must Satisfy? | 2     | L1 | CO3 | III     |  |  |
| 14              | Name Two Classical Synchronization Problems.                                                | 2     | L1 | CO3 | Ш       |  |  |
| 15              | Explain Semaphores.                                                                         | 2     | L1 | CO3 | III     |  |  |
|                 | MID-II Questions                                                                            |       |    | •   |         |  |  |
| 16              | Differentiate Between Shared Memory And Message Queues.                                     | 2     | L2 | CO3 | Ш       |  |  |
| 17              | Explain the Inter-process Communication Mechanisms                                          | 2     | L2 | CO3 | Ш       |  |  |

| 18 | Describe Inter-process communication models                                    | 2 | L3 | CO3 | III |
|----|--------------------------------------------------------------------------------|---|----|-----|-----|
| 19 | Explain Logical and Physical Address Spaces.                                   | 2 | L2 | CO4 | IV  |
| 20 | Illustrate the Swapping In Memory Management?                                  | 2 | L2 | CO4 | IV  |
| 21 | Define A Page Fault.                                                           | 2 | L1 | CO4 | IV  |
| 22 | Identify the List of various contiguous memory allocations and explain anyone. | 2 | L3 | CO4 | IV  |
| 23 | What is Virtual Memory? What are the Benefits of having Virtual Memory.        | 2 | L1 | CO4 | IV  |
| 24 | List out the Page Replacement Algorithms.                                      | 2 | L1 | CO4 | IV  |
| 25 | What Are the Three Main Access Methods for Files?                              | 2 | L1 | CO5 | V   |
| 26 | Differentiate Between Read and Write System Calls.                             | 2 | L2 | CO5 | V   |
| 27 | Explain file system structure.                                                 | 2 | L1 | CO5 | V   |
| 28 | List the File Allocation Methods.                                              | 2 | L1 | CO5 | V   |
| 29 | Describe the Free Space Management?                                            | 2 | L3 | CO5 | V   |
| 30 | Compare the open( ),close() System call?                                       | 2 | L2 | CO5 | V   |

# GROUP OF INSTITUTIONS PART-B

|   | MID-I Questions                                                                                          |   |    |     |   |  |  |
|---|----------------------------------------------------------------------------------------------------------|---|----|-----|---|--|--|
| 1 | Compare The Features of a Time-Shared System and A Multiprogramming System.                              | 4 | L2 | CO1 | I |  |  |
| 2 | Write in detail about the services of OS.                                                                | 4 | L2 | CO1 | I |  |  |
| 3 | Explain OS Structure with neat diagram                                                                   | 4 | L2 | CO1 | I |  |  |
| 4 | Describe The Structure of a Simple Batch Processing System.                                              | 4 | L4 | CO1 | I |  |  |
| 5 | Discuss about the Process Control Block.                                                                 | 4 | L3 | CO1 | I |  |  |
| 6 | Analyze The Differences Between a Personal Computer Operating System and A Distributed Operating System. | 4 | L3 | CO1 | I |  |  |
| 7 | Explain the various types of Operating Systems in detail.                                                | 8 | L2 | CO1 | I |  |  |
| 8 | Discuss about process concept and scheduling                                                             | 8 | L3 | CO1 | Ι |  |  |
| 9 | Define thread and explain about various types of thread in detail                                        | 8 | L2 | CO1 | I |  |  |

| 10 | What is CPU scheduling algorithms, discuss the scheduling criteria in detail.                                                                                                                                                                                                           |                                                                                                              |                                                                                        |                                                                                   | 4   | L2  | CO2 | П  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|-----|----|
| 11 | Illustrate the Banker's Algorithm in deadlock avoidance.                                                                                                                                                                                                                                |                                                                                                              |                                                                                        |                                                                                   |     | L4  | CO2 | II |
| 12 | Discuss Proc<br>exit, wait, wa                                                                                                                                                                                                                                                          | ess Manageme<br>ait pid, exec                                                                                | nt System                                                                              | Calls-fork,                                                                       | 4   | L3  | CO2 | II |
| 13 | Define Dead<br>Deadlock                                                                                                                                                                                                                                                                 | lock. Explain n                                                                                              | ecessary C                                                                             | Conditions for                                                                    | 4   | L2  | CO2 | П  |
| 14 | Discuss abou                                                                                                                                                                                                                                                                            | t the Deadlock                                                                                               | Prevention                                                                             |                                                                                   | 4   | L3  | CO2 | II |
| 15 | Compare the                                                                                                                                                                                                                                                                             | Deadlock Rec                                                                                                 | overy and p                                                                            | prevention                                                                        | 4   | L5  | CO2 | II |
| 16 | Consider the following five processes =(P1,P2,P3,P4,P5) with Arrival times = (0,0, 2, 3, 5) and Burst Time = (9, 8, 4, 2, 4) respectively. Find average waiting time and average turnaround time for the above processes using pre-emptive version of SJF/FIFO CPU scheduling algorithm |                                                                                                              |                                                                                        |                                                                                   |     | L3  | CO2 | П  |
| 17 | P2,P3,P4,P5;<br>Burst Time=<br>waiting time<br>above proces                                                                                                                                                                                                                             | following five<br>) with Arrival t<br>(9,8,4,6, 8) res<br>and average tu<br>ses using Rour<br>se time quantu | imes =( 0,2<br>spectively.<br>spectively.<br>spectively.<br>spectively.<br>spectively. | 2,3,4,7) and<br>Find average<br>ime for the<br>PU Scheduling                      | 8   | L3  | CO2 | П  |
| 18 | P4 and three<br>A has 10 inst<br>instances. Su                                                                                                                                                                                                                                          | resources of ty<br>ances, B has 5                                                                            | pe A, B, C instances a                                                                 | sses P0 through. Resource type and type C has 7 ing snapshot of                   | UTK | SMC | CO2 | II |
|    | PROCESS                                                                                                                                                                                                                                                                                 | ALLOCATION                                                                                                   | MAX                                                                                    | AVAILABLE                                                                         |     |     |     |    |
|    |                                                                                                                                                                                                                                                                                         | ABC                                                                                                          | АВС                                                                                    | АВС                                                                               |     |     |     |    |
|    | P0<br>P1                                                                                                                                                                                                                                                                                | 2 0 0                                                                                                        | 7 5 3                                                                                  | 3 3 2                                                                             |     |     |     |    |
|    | P2                                                                                                                                                                                                                                                                                      | 3 0 2                                                                                                        | 9 0 2                                                                                  | 8                                                                                 |     |     |     |    |
|    | Р3                                                                                                                                                                                                                                                                                      | 2 1 1                                                                                                        | 2 2 2                                                                                  |                                                                                   |     | L3  |     |    |
|    | P4                                                                                                                                                                                                                                                                                      | 0 0 2                                                                                                        | 4 3 3                                                                                  |                                                                                   |     | LS  |     |    |
|    | b) Is the is the c) Wha addit insta                                                                                                                                                                                                                                                     | e system in a sa<br>e safe sequence<br>t will happen i<br>tional instance<br>nces of resource                | afe state? If<br>e?<br>if process l<br>of resource<br>ce type C?                       | e Need matrix?  Fyes, then what  P1 requests one  type A andtwo  resource, can it |     |     |     |    |

|     |                                                                                                                                                                    |     |    | ~~~ |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|-----|
| 19  | Describe Necessary conditions for solution to<br>Critical Section Problem                                                                                          | 4   | L2 | CO3 | III |
| 20  | Explain the classical problems of synchronization.                                                                                                                 | 4   | L3 | CO3 | III |
| 21  | Discuss Semaphore Implementation                                                                                                                                   | 4   | L3 | CO3 | III |
| 22  | Explain Synchronization Hardware                                                                                                                                   | 4   | L2 | CO3 | III |
| 23  | Explain critical regions in process management and synchronization.                                                                                                | 4   | L2 | CO3 | III |
|     | MID-II Questions                                                                                                                                                   |     |    |     |     |
| 2.4 | TD 11 T                                                                                                                                                            | 1 4 | Τ  | GO2 | TTT |
| 24  | Describe Inter-process communication models in detail                                                                                                              | 4   | L6 | CO3 | III |
| 25  | Explain the Inter-process Communication Mechanisms in detail.                                                                                                      | 4   | L2 | CO3 | III |
| 26  | Discuss about the Inter process Communication Between Processes on different computer systems.                                                                     | 4   | L3 | CO3 | III |
| 27  | Explain in detail of message queues and shared memory.                                                                                                             | 4   | L3 | CO3 | III |
| 28  | Explain Inter process Communication with using pipes.                                                                                                              | 4   | L2 | CO3 | III |
| 29  | Differentiate between Logical and Physical Address in Operating System                                                                                             | 4   | L3 | CO4 | IV  |
| 30  | Discuss Swapping with a neat diagram                                                                                                                               | 4   | L6 | CO4 | IV  |
| 31  | Explain swapping in memory management.                                                                                                                             | 4   | L2 | CO4 | IV  |
| 32  | Consider the following page references: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. Find no of page faults when FIFO is implemented. Use 3 frames. | 4   | L3 | CO4 | IV  |
| 33  | Explain the various page replacement strategies                                                                                                                    | 4   | L3 | CO4 | IV  |
| 34  | Briefly Explain Dynamic Partitioning                                                                                                                               | 4   | L2 | CO4 | IV  |
| 35  | Explain Demand Paging in detail                                                                                                                                    | 8   | L2 | CO4 | IV  |
| 36  | Explain Segmentation with Paging in detail                                                                                                                         | 8   | L3 | CO4 | IV  |
| 37  | Illustrate the Optimal Page Replacement Algorithm with an example.                                                                                                 | 8   | L5 | CO4 | IV  |
| 38  | Describe the various File operations                                                                                                                               | 4   | L2 | CO5 | V   |
| 39  | Discuss about the protection of files                                                                                                                              | 4   | L3 | CO5 | V   |
| 40  | Briefly describe the File System Structure                                                                                                                         | 4   | L2 | CO5 | V   |
| 41  | Describe the memory file system structures                                                                                                                         | 4   | L4 | CO5 | V   |
| 42  | Explain Indexed file allocation method with neat diagram.                                                                                                          | 4   | L4 | CO5 | V   |
| 43  | Briefly describe the Layered file system                                                                                                                           | 4   | L2 | CO5 | V   |
| 44  | Explain the various directory structures supported by OS                                                                                                           | 8   | L3 | CO5 | V   |

| 45 | List out the Free Space Management techniques and  | 8 | L4 | CO5 | V |
|----|----------------------------------------------------|---|----|-----|---|
|    | explain any one.                                   |   |    |     |   |
| 46 | Discuss usage of open, create, read, write, close, | 8 | L4 | CO5 | V |
|    | lseek, stat, ioctl System Calls with Syntaxes      |   |    |     |   |

